Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0006

The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila  

Ryu, Tae Hoon (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Subramanian, Manivannan (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Yeom, Eunbyul (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Yu, Kweon (Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Abstract
CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.
Keywords
dopamine; Drosophila; locomotion; prominin-like; protocerebral anterior medial neurons;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim, J., Jang, S., Choe, H.K., Chung, S., Son, G.H., and Kim, K. (2017). Implications of circadian rhythm in dopamine and mood regulation. Mol. Cells 40, 450-456.
2 Lan, X., Wu, Y.Z., Wang, Y., Wu, F.R., Zang, C.B., Tang, C., Cao, S., and Li, S.L. (2013). CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. Int. J. Mol. Med. 31, 315-324.   DOI
3 Landayan, D., Feldman, D.S., and Wolf, F.W. (2018). Satiation state-dependent dopaminergic control of foraging in Drosophila. Sci. Rep. 8, 5777.
4 Lee, S.H., Cho, E., Yoon, S.E., Kim, Y., and Kim, E.Y. (2021). Metabolic control of daily locomotor activity mediated by tachykinin in Drosophila. Commun. Biol. 4, 693.
5 Liu, Q., Liu, S., Kodama, L., Driscoll, M.R., and Wu, M.N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22, 2114-2123.   DOI
6 Mao, Z. and Davis, R. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5.
7 Miraglia, S., Godfrey, W., Yin, A.H., Atkins, K., Warnke, R., Holden, J.T., Bray, R.A., Waller, E.K., and Buck, D.W. (1997). A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013-5021.   DOI
8 Nie, J., Mahato, S., Mustill, W., Tipping, C., Bhattacharya, S.S., and Zelhof, A.C. (2012). Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev. Biol. 371, 312-320.   DOI
9 Pandey, U.B. and Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411-436.   DOI
10 Perry, C.J. and Barron, A.B. (2013). Neural mechanisms of reward in insects. Annu. Rev. Entomol. 58, 543-562.   DOI
11 Poewe, W., Antonini, A., Zijlmans, J.C., Burkhard, P.R., and Vingerhoets, F. (2010). Levodopa in the treatment of Parkinson's disease: an old drug still going strong. Clin. Interv. Aging 5, 229-238.
12 Riemensperger, T., Issa, A.R., Pech, U., Coulom, H., Nguyen, M.V., Cassar, M., Jacquet, M., Fiala, A., and Birman, S. (2013). A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease. Cell Rep. 5, 952-960.   DOI
13 Riemensperger, T., Isabel, G., Coulom, H., Neuser, K., Seugnet, L., Kume, K., Iche-Torres, M., Cassar, M., Strauss, R., Preat, T., et al. (2011). Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc. Natl. Acad. Sci. U. S. A. 108, 834-839.   DOI
14 Timmons, S., Coakley, M.F., Moloney, A.M., and O' Neill, C. (2009). Akt signal transduction dysfunction in Parkinson's disease. Neurosci. Lett. 467, 30-35.   DOI
15 Ueno, T., Tomita, J., Tanimoto, H., Endo, K., Ito, K., Kume, S., and Kume, K. (2012). Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat. Neurosci. 15, 1516-1523.   DOI
16 Wang, X., Zheng, H., Jia, Z., Lei, Z., Li, M., Zhuang, Q., Zhou, H., Qiu, Y., Fu, Y., Yang, X., et al. (2019). Drosophila Prominin-like, a homolog of CD133, interacts with ND20 to maintain mitochondrial function. Cell Biosci. 9, 101.
17 Wei, Y., Jiang, Y., Zou, F., Liu, Y., Wang, S., Xu, N., Xu, W., Cui, C., Xing, Y., Liu, Y., et al. (2013). Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, 6829-6834.   DOI
18 Weigmann, A., Corbeil, D., Hellwig, A., and Huttner, W.B. (1997). Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 94, 12425-12430.   DOI
19 Villanueva, J.E., Livelo, C., Trujillo, A.S., Chandran, S., Woodworth, B., Andrade, L., Le, H.D., Manor, U., Panda, S., and Melkani, G.C. (2019). Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat. Commun. 10, 2700.
20 Wittkopp, P.J., True, J.R., and Carroll, S.B. (2002). Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129, 1849-1858.   DOI
21 Won, S.Y., You, S.T., Choi, S.W., McLean, C., Shin, E.Y., and Kim, E.G. (2021). cAMP response element binding-protein- and phosphorylation-dependent regulation of tyrosine hydroxylase by PAK4: implications for dopamine replacement therapy. Mol. Cells 44, 493-499.   DOI
22 Xie, J., Wang, D., Ling, S., Yang, G., Yang, Y., and Chen, W. (2019). High-salt diet causes sleep fragmentation in young Drosophila through circadian rhythm and dopaminergic systems. Front. Neurosci. 13, 1271.
23 Yamamoto, S. and Seto, E.S. (2014). Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms. Exp. Anim. 63, 107-119.   DOI
24 Zacchigna, S., Oh, H., Wilsch-Brauninger, M., Missol-Kolka, E., Jaszai, J., Jansen, S., Tanimoto, N., Tonagel, F., Seeliger, M., Huttner, W.B., et al. (2009). Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J. Neurosci. 29, 2297-2308.   DOI
25 Zhang, Q., Zulfiqar, F., Xiao, X., Riazuddin, S.A., Ahmad, Z., Caruso, R., MacDonald, I., Sieving, P., Riazuddin, S., and Hejtmancik, J.F. (2007). Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum. Genet. 122, 293-299.   DOI
26 Ryu, T.H., Yeom, E., Subramanian, M., Lee, K.S., and Yu, K. (2019). Prominin-like regulates longevity and glucose metabolism via insulin signaling in Drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1557-1563.   DOI
27 Zheng, H., Zhang, Y., Chen, Y., Guo, P., Wang, X., Yuan, X., Ge, W., Yang, R., Yan, Q., Yang, X., et al. (2019). Prominin-like, a homolog of mammalian CD133, suppresses di lp6 and TOR signaling to maintain body size and weight in Drosophila. FASEB J. 33, 2646-2658.   DOI
28 Zhou, Q.Y. and Palmiter, R.D. (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197-1209.   DOI
29 Roper, K., Corbeil, D., and Huttner, W.B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2, 582-592.   DOI
30 Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.Y., Hayworth, K.J., Huang, G.B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., et al. (2020). A connectome and analysis of the adult Drosophila central brain. Elife 9, e57443.
31 Sekine, Y., Takagahara, S., Hatanaka, R., Watanabe, T., Oguchi, H., Noguchi, T., Naguro, I., Kobayashi, K., Tsunoda, M., Funatsu, T., et al. (2011). p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors. J. Cell Sci.124, 3006-3016.   DOI
32 Shulman, J.M., Jager, P.L.D., and Feany, M.B. (2011). Parkinson's disease: genetics and pathogenesis. Annu. Rev. Pathol. 6, 193-222.   DOI
33 Soto-Padilla, A., Ruijsink, R., Sibon, O.C.M., van Rijn, H., and Billeter, J.C. (2018). Thermosensory perception regulates speed of movement in response to temperature changes in Drosophila melanogaster. J. Exp. Biol.221, jeb174151.
34 Berry, J.A., Cervantes-Sandoval, I., Nicholas, E.P., and Davis, R.L. (2012). Dopamine is required for learning and forgetting in Drosophila. Neuron 74, 530-542.   DOI
35 Sun, J., Xu, A.Q., Giraud, J., Poppinga, H., Riemensperger, T., Fiala, A., and Birman, S. (2018). Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in Drosophila. Front. Syst. Neurosci. 12, 6.
36 Tao, L., Ozarkar, S., and Bhandawat, V. (2020). Mechanisms underlying attraction to odors in walking Drosophila. PLoS Comput. Biol. 16, e1007718.
37 Alekseyenko, O.V., Lee, C., and Kravitz, E.A. (2010). Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 5, e10806.
38 Bou Dib, P., Gnagi, B., Daly, F., Sabado, V., Tas, D., Glauser, D.A., Meister, P., and Nagoshi, E. (2014). A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet. 10, e1004718.
39 Corbeil, D., Roper, K., Hannah, M.J., Hellwig, A., and Huttner, W.B. (1999). Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells - a combination of apical sorting and retention in plasma membrane protrusions. J. Cell Sci. 112, 1023-1033.   DOI
40 Creamer, M.S., Mano, O., and Clark, D.A. (2018). Visual control of walking speed in Drosophila. Neuron 100, 1460-1473.e6.   DOI
41 Dauer, W. and Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron 39, 889-909.   DOI
42 Huang, R., Song, T., Su, H., Lai, Z., Qin, W., Tian, Y., Dong, X., and Wang, L. (2020). High-fat diet enhances starvation-induced hyperactivity via sensitizing hunger-sensing neurons in Drosophila. Elife 9, e53103.
43 Ding, Q., Miyazaki, Y., Tsukasa, K., Matsubara, S., Yoshimitsu, M., and Takao, S. (2014). CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol. Cancer 13, 15.
44 Fuenzalida-Uribe, N. and Campusano, J.M. (2018). Unveiling the dual role of the dopaminergic system on locomotion and the innate value for an aversive olfactory stimulus in Drosophila. Neuroscience 371, 433-444.   DOI
45 Gowda, S.B.M., Salim, S., and Mohammad, F. (2021). Anatomy and neural pathways modulating distinct locomotor behaviors in Drosophila larva. Biology (Basel) 10, 90.
46 Jordan, K.W., Carbone, M.A., Yamamoto, A., Morgan, T.J., and Mackay, T.F. (2007). Quantitative genomics of locomotor behavior in Drosophila melanogaster. Genome Biol. 8, R172.
47 Keysar, S.B. and Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Mol. Cancer Ther. 9, 2450-2457.   DOI
48 Karim, B.O., Rhee, K.J., Liu, G., Yun, K., and Brant, S.R. (2014). Prom1 function in development, intestinal inflammation, and intestinal tumorigenesis. Front. Oncol. 4, 323.