• Title/Summary/Keyword: Donghwa wetland

Search Result 13, Processing Time 0.026 seconds

Early-Year Performance of the Sihwa Constructed Wetland for Stream Water Treatment (하천수 정화를 위한 시화인공습지의 초기 수질 정화능)

  • Kwun, Soon-Kuk;Lee, Kyung-Do;Cho, Young-Hyun;Kim, Song-Bae;Cheon, Gi-Seol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.93-102
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of Sihwa reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, we monitored hydrology, macrophyte (Phragmites communis Trin,) growth, and water quality in the Banwol and Donghwa wetlands to evaluate their performance during the initial period after the completion of wetland construction, The average removal efficiency($\%$) in each wetland was relatively low compared with the performance data from the North America Wetland Treatment System Database (NADB), which mainly includes urban sewage-treatment wetlands. However, the average removal rates per unit area ($g/m^{2}/day$) were 0.72, 0.72 and 0.51 (BOD), 2,04, 2.46 and 0.70 (SS), 0.89, 0.43 and 1.09 (TN) and 0.02, 0.02 and 0.02 (TP) in the Banwol and Donghwa wetlands and NADB, respectively. The overall performance of the Banwol and Donghwa wetlands was within the expected range of the wetland system processes contributing the reduction of the pollutant load to Lake Sihwa during the initial period of wetland operation. Considering the low influent concentration, high hydraulic loading rate, and insufficient macrophyte growth since the wetland was constructed, better performance is expected if an improved operational scheme is adopted.

The Efficacy of Water Purification and Distribution of Ammonia Oxidizing Bacteria in Shihwa Constructed Wetland (시화호 인공습지의 수질정화 및 암모니아 산화균의 분포 연구)

  • Kim, Seiyoon;Kim, Misoon;Lee, Sunghee;Lim, Miyoung;Lee, Youngmin;Kim, Zhiyeol;Ko, GwangPyo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Water quality and the distribution of ammonia oxidizing bacteria were characterized in constructed wetland of Shihwa lake. Both physico-chemical parameters and fecal indicator microorganisms including total coliforms, E.coli, Enterococcus spp. were measured. In addition, denaturant gradient gel electrophoresis (DGGE) was carried out after PCR amplification of amoA gene from input, output, and wetland sites of the Banwol, Donghwa, and Samhwa stream in Shihwa lake area. Physico-chemical parameters were in proper range for typical nitrifying bacteria to grow and perform their biological activities. Average concentrations of fecal indicator microorganisms of wetland samples were lower than those of input sites. These results suggested that microbial water quality improved by the process of constructed wetland. According to phylogenetic information obtained from DGGE from study sites, distribution of nitrifying bacteria from each of input, output, and wetland were generally distinctive one another. In addition, distribution of nitrifying bacteria between Banwol and Donghwa streams showed higher similarity (52.6%) than this of Samhwa stream (15.2%). These results indicated that characteristics of ammonia oxidizing bacteria in Samhwa were unique in comparison with those of Banwol and Donghwa stream.

Periphytic Diatom Communities and Water Environment in the Donghwa Constructed Wetlands (동화습지의 갈대 침수줄기에 서식하는 부착규조군집의 생태학적 특성)

  • Kim, Baik-Ho;Park, Young-Seok;Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.91-102
    • /
    • 2010
  • Water quality and epiphytic diatom on the submerged stems of reed (Phragmites communis), which occupy 90% of the Donghwa wetland macrophytes were monthly monitored at three points such as inflow stream, high- and low-level wetlands, and outflow stream between March and October, 2005. 1) A diverse and high density of diatom species observed in the cold-season, especially Nitzschia palea and Nitzschia amphibia dominated the diatom community without wetlands. 2) High DAIpo and TDI indices were measured over the sampling periods and stations, regardless of nitrogen increase and phosphorus increase through the wetlands. 3) Higher density of diatom species in high wetland than low wetlands was attributed in the enough nutrients and light penetration by low growth of reed. Therefore, epiphytic diatom of reed stem in Donghwa wetland, where high nutrients released from the sediment and reed debris after the death of macrophytes, flourished with low canopy of low reed vegetation.

Performance of Shi-hwa Constructed Wetland for the treatment of severely polluted stream water (시화호 인공습지를 이용한 오염된 하천의 수질 정화)

  • Lee, Kyung-Do;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.615-618
    • /
    • 2003
  • A prototype of 76 ha Shi-hwa constructed wetland was constructed for the first time in Korea to purify severely polluted stream water. Hydrology, vegetation(macrophyte) and water quality for Banwol and Donghwa wetland built in Shi-hwa tidal reclaimed area were monitored to evaluate the performance of the wetlands. The overall efficiency for the treatment of polluted stream water using the wetlands showed no significant improvement. The monthly average removal rates on SS, BOD, TN and TP for Banwol and Donghwa wetlands showed 66.5% and 62.8%, 14.8 and 34.3%, 33.9 and 47.1% and 20.8 and 51.6%, respectively. It is considered that three major factors, ie. wide fluctuations in inflow rate, short hydraulic retention time and small open area compared with vegetated area could have a great influence on low system efficiency.

  • PDF

Dynamics of Phytoplankton Community in the Open Water Flowed Through the Shihwa Constructed Wetland from Streams (Banwoul, Donghwa and Samhwa stream) (하천수 (반월천, 동화천, 삼화천)의 시화인공습지 관류에 따른 개방수에서 식물플랑크톤 군집 동태)

  • Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.403-411
    • /
    • 2005
  • The Shihwa constructed wetland was established for the treatment of severely polluted water from Banwoul, Donghwa and Samhwa streams, This study was focused on investigating dynamics of phytoplankton community at 5 stations of open waters in the Shihwa constructed wetland from October 2001 to July 2002. The concentration of T-N and T-P of inlet stations from the streams were decreased by flowed through the wetland. However, the TN/TP ratios at all stations were shown as a little over 16 indicating that the T-P plays an important role as a limitation factor. Phytoplankton communities were identified as a total of 413 taxa which were composed of 375 species, 21 varieties, 2 forma and 15 unidentified species. The standing crops of phytoplankton communities and chlorophyll-a concentrations ranged 330 ${\sim}$ 36, 420 cells $mL^{-1}$ and $2.5\;{\sim}\;170.7\;{\mu}g\;L^{-1}$ respectively, and showed a decreasing tendency after flowing through the wetland at almost stations. Dominant species were 14 taxa at all stations which were Euglena oblonga, Synura spinosa, and etc. The species composition, standing crops and chlorophyll concentrations of phytoplankton communities appeared a distinct differences between open waters of inlet from stream and open waters flowed through the wetland. Theses results were affected from decreasing effects of TN, TP and SS by flowed through the wetland from inlet waters of streams.

Structure of Epiphytic Diatom Communities at the Banwoul High and Low Wetlands in the Shiwha Constructed Wetland (시화 반월 고습지와 저습지의 갈대 부착규조 군집 구조)

  • Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.95-106
    • /
    • 2009
  • The Shihwa constructed wetland was established for the treatment of severely poluted water from Banwoul, Donghwa and Samhwa streams. This study was focused on investigating the structure of epiphytic diatom communities on reed (Phragmites communis) planting area at Banwoul high wetland (3 stations) and low wetland (3 stations) from March to October 2005. The concentration of T-N of inlet stations from the streams were decreased by flowed through the wetland, but the concentration of T-P were increased at outflow part. Epiphytic diatoms on the reed were a total 109 taxa which were composed of 103 species, 5 varieties, 1 unidentified species. The standing crops were rapidly decreasing tendency from spring to autumn but chlorophyll-a concentration were showed a very irregulated changes. Dominant species were 6 taxa which were Achnanthes minutissima in the early investigation, and were changed to the genus Navicula and the genus Nitzschia in the summer. DAIpo were ranged the values of $20.2{\sim}51$, which were mesosaprobic states at the high wetland and ranged the values of $12.4{\sim}52$, which were polysaprobic to mesosaprobic states at the low wetland. TDI were ranged the values of $28.8{\sim}94.5$, which were oligotrophic to eutrophic state at the high wetland and ranged the values of $33.3{\sim}89.7$ which were mesotrophic to eutrophic states at the low wetland. The healthy assessment (DAIpo and TDI) of water ecosystem were showed clean-bad from spring to autumn. These epiphytic diatom communities were determinated by the biological factor such as the growth of reed and the physical factors such as water temperature, light penetration and SS and so on.

Primary Production by Epiphytic Algae Attached on the Reed in Constructed Wetlands for Water Treatment (수처리용 인공습지에서 갈대부착조류의 유기물생산력)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Hwang, Gil-Son;Kim, Dong-Sup;Kim, Sea-Won;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.893-900
    • /
    • 2009
  • To estimate the contribution of epiphytic algae attached on reed to organic matter production in constructed wetland, primary productivity by epiphytic algae was investigated in two sub-wetlands (Banweol and Donhwa wetlands) of the Sihwa Constructed Wetland (CW) with different chemistry of inflows. Chlorophyll a concentration of epiphytic algae was higher in the Banweol wetland (range:37~3,581 mgChl.a/$m^2$surface stem, average:655 mgChl.a/$m^2$surface stem) than the Donhwa wetland (range:87~2,093 mgChl.a/$m^2$surface stem, average:527 mgChl.a/$m^2$surface stem). In contrast, assimilation number (AN) representing photosynthetic activity was higher in the Donhwa wetland with low TN/TP ratio than the Banweol wetland. A negative correlation (r=0.46) was observed between TN/TP ratios of inflows and AN in two wetlands, implying that high photosynthetic activity of epiphytic algae may be related with low TN/TP ratio. The areal primary productivity ranged from 307 to 2,473 mgC/$m^2$/day in the Banweol wetland and from 756 to 2,096 mgC/$m^2$/day in the Donghwa wetland, showing high productivity in summer. Average primary production was lower in the Banweol wetland (1,166 mgC/$m^2$/day) than the Donghwa wetland (1,467 mgC/$m^2$/day), although the standing crop (as chlorophyll a concentration) was high in the Banweol wetland. This result may be due to the low photosynthetic activity of epiphytic algae in the Banweol wetland with high TN/TP ratio. The annual primary production (300 tonC/year) of epiphytic algae contributed 33% of the total production in the Sihwa CW. An excessive organic matter production in constructed wetland can negatively affect the efficiency of water treatment. Therefore, the role of epiphytic algae should be considered in management of constructed wetland for water treatment.

Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland (시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성)

  • Choi, Dong-Ho;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kim, Dong-Sup;Joh, Seong-Ju;Park, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.425-437
    • /
    • 2007
  • Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

Photosynthetic Characteristics and Primary Production by Phytoplankton with Different Water Quality of Influent in Open Waters of Constructed Wetlands for Water Treatment (수질정화용 인공습지 개방수역에서 유입수질에 따른 식물플랑크톤의 광합성특성 및 유기물생산력)

  • Choi, Kwang-Soon;Hwang, Gil-Son;Kim, Dong-Sub;Kim, Sea-Won;Kim, Ho-Joon;Joh, Seong-Ju;Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2007
  • The photosynthetic characteristics and primary production by phytoplankton in open waters of two wetlands (the Banwol and the Donghwa wetland) of Sihwa Constructed Wetland with different water chemistry were investigated to provide the information for the wetland management considering the water treatment efficiency. During the study period (from March to October, 2005) the primary productivity in open waters ranged from 481 to 11,275 mgC $m^{-2}$ $day^{-1}$, which is very high compared with the eutrophic level of 600mgC $m^{-2}$ $day^{-1}$. From the analysis of the photosynthesis-irradiance (P-I) model parameters, the photosynthetic characteristics may be affected by different concentration and ratio of nutrient (N and P) between two wetlands. Assimilation number (AN) was higher in the Donghwa wetland (average AN: 8.5gC $gChl^{-1}$ $hr^{-1}$) with high P and low N/P ratio than the Banwol wetland (average AN: 5.8gC $gChl^{-1}$ $hr^{-1}$) with high N and high N/P ratio. This result indicates that AN may be concerned with phosphorus than nitrogen and low NIP ratio. Positive correlation (R=0.81) was observed between the initial slope and AN, implying that AN was high in case of phytoplankton having more active photosynthesis ability under low light. On the other hand, maximum photosynthesis (Pmax) was related positively with chlorophyll a concentration showing correlation coefficient of 0.47. In this study, considering the high primary production through phytoplankton photosynthesis in open waters of Sihwa Constructed Wetland, the produced organic matter by phytoplankton may affect the water quality within wetland and its efficiency of water treatment. Also, the photosynthetic characteristics may be affected by different nutrient enrichment (especially phosphorus) of wetlands. This study suggests that the production by phytoplankton and its characteristics in open water of constructed wetland for water treatment should be considered to improve the removal efficiency of organic matter.

Primary Production and Litter Decomposition of Macrophytes in the Sihwa Constructed Wetlands (시화호 인공습지에서 수생식물의 유기물 생산과 낙엽 분해)

  • Choi, Kwangsoon;Kim, Ho Joon;Kim, Dong Sub;Cho, Kang Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.347-356
    • /
    • 2013
  • To provide the information for the wetland management considering the water treatment ability of macrophytes, the growth characteristics and primary production by reed (Phragmites australis) and cattail (Typha angustifolia), and the decomposition rate of organic matter produced were investigated in two sub-wetlands (Banweol and Donhwa wetlands) of the Sihwa Constructed Wetland (CW) with different chemistry of inflows. The shoot height of P. australis and Typha angustifolia began to increase in March, and reached its peaks in July and August (340cm and 320cm, respectively). The shoot density of P. australis ranging $100{\sim}170EA/m^2$ was higher than that of T. angustifolia (max. $78EA/m^2$). Standing biomass of P. australis ranged from $1,350{\sim}1,980gDM/m^2$, with maximal biomass in Banwol Upper Wetland. And it was larger in upper wetlands than lower wetlands. On the other hand standing biomass of T. angustifolia ($1,940gDM/m^2$) was similar to that of P. australis in Banwol Upper Wetland. Primary productivity of P. australis was in the order of Banwol Upper Wetland ($2,050gDM/m^2/yr$) > Donghwa Lower Wetland ($1,840gDM/m^2/yr$) > Banwol Lowerr Wetland ($1,570gDM/m^2/yr$) ${\fallingdotseq}$ Donghwa Lower Wetland ($1,540gDM/m^2/yr$), and that of T. angustifolia ($2,210gDM/m^2/yr$) was higher than P. australis. Annual production of organic matter produced by P. australis and T. angustifolia was 845 ton DM/yr (423 ton C/yr), and about 90% was comprised of that by P. australis. From the litter decomposition rate (k) (P. australis: leaf 0.0062/day, stem 0.0018/day; T. angustifolia: leaf 0.0031/day, stem 0.0018/day), leaf was rapid degraded compare to stem in both P. australis and T. angustifolia. The litter decomposition rate of leaf was two times rapid P. australis than T. angustifolia, whereas that of stem was same in both. Annual litter decomposition amount of P. australis than T. angustifolia was 285 ton C/yr(67.3% of organic matter produced by macrophytes), indicating that 32.7% of organic matter produced by macrophytes is accumulated in the Sihwa CW.