Periphytic Diatom Communities and Water Environment in the Donghwa Constructed Wetlands

동화습지의 갈대 침수줄기에 서식하는 부착규조군집의 생태학적 특성

  • Received : 2010.01.22
  • Accepted : 2010.03.03
  • Published : 2010.03.01

Abstract

Water quality and epiphytic diatom on the submerged stems of reed (Phragmites communis), which occupy 90% of the Donghwa wetland macrophytes were monthly monitored at three points such as inflow stream, high- and low-level wetlands, and outflow stream between March and October, 2005. 1) A diverse and high density of diatom species observed in the cold-season, especially Nitzschia palea and Nitzschia amphibia dominated the diatom community without wetlands. 2) High DAIpo and TDI indices were measured over the sampling periods and stations, regardless of nitrogen increase and phosphorus increase through the wetlands. 3) Higher density of diatom species in high wetland than low wetlands was attributed in the enough nutrients and light penetration by low growth of reed. Therefore, epiphytic diatom of reed stem in Donghwa wetland, where high nutrients released from the sediment and reed debris after the death of macrophytes, flourished with low canopy of low reed vegetation.

상을 차지하는 갈대의 침수줄기에 형성된 부착규조 군집 빛 수질특성을 파악하고자, 결빙기를 제외한 2005년 3월부터 10월까지 유입수, 습지(고습지, 저습지), 배출구를 각각 조사하여 다음과 같은 결과를 얻었다. 1) 습지에 상관없이 높은 유기물 및 영양염 지수를 나타냈으며, 습지를 통과하면서 질소계열은 감소한 반면, 인계열은 오히려 증가하였다. 2) 부착규조는 저온기에 보다 다양하고 높은 생물량을 나타냈으며, 우점종은 습지에 관계없이 Nitzschia palea, Nitzschia amphibia 였으며, 조사 시기(강우)에 따라 다양한 범위를 나타냈다 3) 저습지 보다 고습지에서 높은 현존량은 영양염과 광투과율, 그리고 낮은 canopy와 관계가 있는 것으로 판단되었다. 따라서 동화습지는 풍부한 퇴적물과 갈대 쇄설물로부터 유출된 영양물질(특히 인)이 특정 규조류의 성장을 촉진하였으며, 특히 갈대식물 밀도가 적어 낮은 canopy를 보였던 고습지에서 높은 현존량을 나타났다.

Keywords

References

  1. 김용재. 1999. 부착규조에 의한 포천천의 수질평가. 한국육수학회지 32: 135-140.
  2. 김용재. 2001. 신천의 부착규조 군집과 유기오탁 판정. 한국육수학회지 34: 199-205.
  3. 김용재. 2005. 하천수(반월천, 동화천, 삼화천)의 시화인공습지 관류에 따른 개방수에서 식물 플랑크톤 군집 동태. 한국육수학회지 38: 403-411.
  4. 김용재. 2009. 시화 반월 고습지와 저습지의 갈대 부착규조 군집 구조. 한국하천호수학회지 42: 95-106.
  5. 김용재, 권순국. 2004. 시화호 인공습지의 식물플랑크톤과 갈대 부착조류 군집의 동태. 한국환경농학회지 23: 59-67.
  6. 김용재, 김한순. 2006. 시화인공습지 완공 초기에 갈대 부착조류 군집의 변화. 한국육수학회지 39: 402-412.
  7. 서동철, 임석천, 조인성, 이병주, 이홍재, 김상돈, 이준배, 조주식, 허종수. 2009.단일 통풍형과 이중 통풍형 인공습지시스템의 하수처리 효율 비교. 한국환경농학회지 28: 258-265.
  8. 수원기상대. http://www.kma.go.kr/shfc/sfc-03-02.jsp.
  9. 이정호. 1998. 낙동강의 부착규조와 유기오탁지수(DAIpo). 한국육수학회지 31: 38-44.
  10. 정연숙, 오현경, 노찬호, 황길순. 1999. 습지식물의 지상부 제거가 생산력과 영양염류 제거량에 미치는 효과. 환경생물 17: 459-465.
  11. 최돈혁, 최광순, 김동섭, 김세원, 최동호, 황인서, 이윤경, 강 호. 2008. 시화호 인공습지에서 시공간적 수질분포 및 오염물질 제거효율 평가. 대한환경공학회지 30: 1013-1020.
  12. 한국수자원공사. 2002. 시화호 인공습지 운영관리 방안 연구.
  13. 환경부. 2007. 수생태건강성 조사 및 평가.
  14. 환경부. 2008. 수생태건강성 조사 및 평가.
  15. Adamus, P.R. and L.T. Stockwell. 1983. A method for wetland functional assessment: VII. 1. Critical review and evaluation concepts. US Dept. Transportation, Fedral Highway Administration. Report FHWA IP: 82-83.
  16. APHA. 1995. Standard Methods for the Examination of Water and Wastewater. 19th ed. American Public Health Association, Washington.
  17. Braakhekke, W.G. and M. Marchand. 1987. Wetlands: The community's wealth. European Environment Bureau. Brussels. 24.
  18. Callow, M.E. 2000. Algal biofilm, p. 189-222. In: Biofilm: Recent advances in their study and control CEvans, L.V., ed.). Harwood Academic Publ., Amsterdam.
  19. Caron, D.A. and J.M. Sieburth. 1981. Disrution of the primary fouling sequence on fiber glass-reinforced plastic submerged in the marine environment. Appl. Environ. Microbiol. 41: 268-273.
  20. Corbitt, R.A. and P.T. Bowen. 1994. Constructed wetlands for wastewater treatment, p. 221-241. In: Applied Wetlands Science and Technology (Kent, D.M., ed.). Publishers Lewis, CRC Press, Boca Raton, FL.
  21. Denys, L. 2004. Relation of abundance-weighted averages of diatom indicator values to measured environmental conditions in standing freshwaters. Ecological Indicators 4: 255-275. https://doi.org/10.1016/j.ecolind.2004.06.001
  22. Forsberg, C. and S.O. Ryding. 1982. Eutrophication parameter and trophic state indices in 30 Swedish receiving lakes. Arch. Hydrobiol. 89: 189-207. https://doi.org/10.1007/BF00006171
  23. Ghosh, D. and S. Sen. 1987. Ecological history of Calcutta's wetland conversion. Environmental Conservation 14: 219-226. https://doi.org/10.1017/S0376892900016416
  24. Hendey, N.I. 1979. The permanganate method for cleaning freshly gathered diatoms. Microscopy 32: 423-426.
  25. Hill, B.H., A.T. Herlihy, P.R. Kaufmann, R.J. Srevenson, F.H. McCormick and C.B. Johnson. 2003. Use of periphyton assemblage data as an index of biotic integrity. J. N. Am. Benthol. Soc. 19: 50-67.
  26. Horn, A.J. and C.R. Goldman. 1994. Limnology, McGraw-Hill, Inc., New York.
  27. Jun, M.S., Y. Watanabe and B.C. Kim. 1998. The effects of dilution rate and temperature on phytoplankton growth in stream water. Korean Journal of Limnology 31: 328-336.
  28. Kadlec, R.H. and R.L. Knight. 1996. Treatment wetlands. Boca Raton, FL: Lewis Publishers.
  29. Kelly, M.G. and B.A. Whitton. 1998. Biological monitoring of eutreophication in rivers. Hydrobiol. 384: 55-67. https://doi.org/10.1023/A:1003400910730
  30. Kelly, M.G., C. Adams, A.C. Graves, J. Jamieson, J. Krokowski, E.B. Lycett, J. Murray-Bligh, S. Pritchard and C. Wilkins. 2001. The trophic diatom index: a user's manual. (Revised ed.). R & D Technical Report E2/TR2.
  31. Meenakumari, B. and N.B. Nair. 1994. The effects of slime film on barnacle settlement, p. 3-9. In: Recent Developments in Biofouling Control (Thomson, M.F., R. Nagabhushnam, R. Sarojini and M. Fingerman, eds.). Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
  32. Mittsch, W.J. and J.G. Gosselink. 2000. Wetlands. 3rd ed. Willey, New York.
  33. Patrick, R. 1948. Factors affecting the distribution of diatoms. Bot. Rev. 14: 473-524. https://doi.org/10.1007/BF02861575
  34. Phiri, C., J. Day, M. Chimbari and E. Dhlomo. 2007. Epiphytic diatoms associated with a submerged macrophyte, Vallisnria aethiopica, in the shallow marginal areas of Sanyati Basin (Lake Kariba): a preliminary assessment of their use as biomonitoring tools. Aquat. Ecol. 41: 169-181. https://doi.org/10.1007/s10452-006-9073-z
  35. Poulicova, A., M. Duchoslaw and M. Dokulil. 2004. Littoral diatom assemblages as bioindicators of lake trophic status: a case study from perialpine lakes in Austria. Eur. J. Phycol. 99: 143-152.
  36. Shannon, C.E. and W. Weaver. 1963. The Mathematical theory of communication. Illinois Univ. Press, Urbana.
  37. Shimpson, E.H. 1949. Measurement of diversity. Nature 163: 1-688. https://doi.org/10.1038/163001a0
  38. Sondergaard, M. and H.H. Schierup. 1982. Dissolved organic carbon during a spring diatom bloom in Lake Mosso, Denmark. Water Res. 16:815-821. https://doi.org/10.1016/0043-1354(82)90010-0
  39. Sudhakar, G., B. Jyothi and V. Venkateswarlu. 1994. Role of diatoms as indicators of pollution gradients. Envir. Monit. Assess. 33: 85-99. https://doi.org/10.1007/BF00548591
  40. Vollenweider, R.A. 1979. Das Nahrstoftbelastungskonzept als Grundlag fur den externen Eingriff in den Eutrophilerungsprozess stehender Gewasser und Talsperren. Z. Wasseru. Abwasser-Forschung. 12: 46-56.
  41. Watanabe, T. and K. Asai. 1990. Numerical simulation using diatoms assemblage of organic pollution in stream and lakes. Rev. Inq. Res. 52: 99-139.
  42. Watanabe, T., T. Ohtsuka, A. Tuji and A. Houki. 2005. Picture book and ecology of the freshwater diatoms. Uchidarokakuho, Tokyo.
  43. Yamamoto, M., H. Murai, A. Takeda, S. Okunishi and H. Morasaki. 2005. Bacterial flora of the biofilm formed on the submerged surface of the reed Phragmites australis. Microb. Environ. 20: 14-24. https://doi.org/10.1264/jsme2.20.14