• Title/Summary/Keyword: Dominant Frequency Band

Search Result 83, Processing Time 0.025 seconds

A Study on the Characteristics of Vibration Induced by Subway Operation (지하철 운행에 따른 진동특성에 관한 연구)

  • 배동명;신창혁;최철은;박상곤;백용진
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.249-256
    • /
    • 2001
  • In this paper the characteristics of vibration induced by subway trains running on track is discussed. The quantitative prediction of the vibration level and the countermeasure for reduction of necessary, is of importance for the better environment. It was made the constructed Bundang line as first step with the modified Young-Dan type to basis on the Japanese Young-Dan type. In this paper it was measured and analyzed to two region ($ \circled1$Susuh-Bokjung. $ \circled2$Chorim-Suhyun region) of this. at present, operational Bundang line when averaging velocity of train is 60 (km/h). As the response characteristics of frequency Induced by subway operation, it was confirmed that frequency band of neighborhood of 30~80 Hz in generally dominant. Also to assess the quantitative nitration as response level to be measured for each point of two region in subway operation, the vibrational response level was measured at the state to be not subway operation. And the level was approximately $\fraction one-fifth~\fraction one-ten$ level comparing to subway operation.

  • PDF

A Study of the Estimation Method for the Dielectric Properties of Dielectrics in Millimeter Wave Range using Bethe's Small Hole Coupling (Bethe's Small Hole Coupling을 이용한 유전체의 밀리미터파대 유전특성 평가방법에 관한 연구)

  • Lee, Hong-Yeol;Jun, Dong-Suk;Hahn, Jin-Woo;Lee, Sang-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1136-1139
    • /
    • 2002
  • The circular cavity resonator which can measure the dielectric properties of dielectrics in the Ka-band(26.5GHz~40GHz) frequency range was designed and fabricated. A structure of the resonator is divided into two equal parts of the length and the dielectric plate sample is placed between two halves. Exciting and detecting of the resonator is performed by WR28 rectangular waveguides using Bethe's small hole coupling. The GaAs plate sample, whose permittivity is known to be 13 in millimeter wave range, was used for the verification of the performance of the fabricated circular cavity resonator. In the measurement of GaAs single crystal using that resonator, the resonant frequency of the dominant $TE_{011}$ mode, the permittivity and $Q{\times}f_0$ were measured as 26.69GHz, 12.9 and 124,000GHz, respectively.

  • PDF

THE SEA NOISE OF THE MOVING TRAWL NET (예망어구에서 발생되는 수중음에 관한 연구)

  • YOON Gab Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 1975
  • The sea noise of moving trawl net was recorded by an underwater tape recorder which was set wireless, and was analyzed by a sound level meter and an octave-band analyzer. The frequency distribution of sea noise of the moving otter trawl net ranged from DC to 5000 Hz, and the dominant frequency zone ranged from 500 Hz to 700 Hz, and the maximum sound pressure is about 22 dB at the otter trawl net. The main sound source of the sea noise from the moving trawl net was found to be sea noise due to the resistance of the ground rope against the sea bottom.

  • PDF

A Study of the Estimation Method for the Dielectric Properties of Dielectrics in Millimeter Wave Range using Bethe's Small Hole Coupling (Bethe's Small Hole Coupling을 이용한 유전체의 밀리미터파대 유전특성 평가방법에 관한연구)

  • 이홍열;전동석;한진우;이상석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1085-1089
    • /
    • 2002
  • The circular cavity resonator which can measure the dielectric properties of dielectrics in the Ka-band(26.5GHz∼400Hz) frequency range was designed and fabricated. A structure of the resonator is divided into two equal parts of the length and the dielectric plate sample is placed between two halves. Exciting and detecting of the resonator is Performed by WR28 rectangular waveguides using Bethe's small hole coupling. The GaAs plate sample, whose performance is known to be 13 in millimeter wave range, was used for the verification of the performance of the fabricated circular cavity resonator In the measurement of GaAs single crystal using that resonator, the resonant frequency of the dominant TE$\sub$011/ mode, the permittivity and Q${\times}$f$\sub$0/ were measured as 26.69GHz, 12.9 and 124,000GHz, respectively.

A Power Plane Using the Hybrid-Cell EBG Structure for the Suppression of GBN/SSN (GBN/SSN 억제를 위한 이종 셀 EBG 구조를 갖는 전원면)

  • Kim, Dong-Yeop;Joo, Sung-Ho;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.206-212
    • /
    • 2007
  • In this paper, a novel power/ground plane using the hybrid-cell electromagnetic band-gap(EBG) structure is proposed for the wide-band suppression of the ground bound noise(GBN) or simultaneous switching noise(SSN). The -30 dB stopband of the proposed structure starts from a few hundred MHz where the GBN/SSN energy is dominant. The distinctive features of this new structure are the thin spiral strip line and hybrid-cells. They realize the enhanced inductance and the shorter period of the EBG lattice. As a result, the lower cut-off frequency and bandwidth of the -30 dB stopband becomes lower and wider, respectively. In addition, the proposed structure has smaller number of resonance modes between power/ground planes and performs a low EMI behavior compared with the reference board.

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Spectral Analysis of REM Sleep EEG in Narcolepsy and REM Sleep Behavior Disorder (기면병과 렘수면행동장애에서의 렘수면 뇌파 스펙트럼 분석)

  • Kim, Hyung-Il;Jeong, Do-Un;Park, Kwang-Suk
    • Sleep Medicine and Psychophysiology
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • Introduction: It has been proposed that narcolepsy and REM sleep behavior disorder (RBD) have overlapped symptom profile and pathophysiology. This study was aimed at measuring and comparing changes in EEG frequency band of REM sleep in narcolepsy and RBD, applying EEG spectral analysis method. Methods: Nine patients diagnosed as narcolepsy and the same number of RBD patients were studied. Spectral analysis of the REM sleep EEG was performed in each patient on 9 epochs selected evenly from the first, second, and third REM periods. Then, we compared frequency band percentages of REM sleep EEG in narcolepsy and RBD. Results: Narcolepsy patients had significantly higher delta frequency ratio than RBD ones (p=0.00). In alpha and beta2 frequency bands, RBD patients showed higher percentage than narcolepsy ones. Slow wave sleep was more prevalent in narcolepsy patients. But, no difference of REM sleep percentage was found between the two groups (p=0.93). Conclusion: Higher delta frequency ratio in REM sleep of narcolepsy patients than RBD ones reflects that sleep-promoting mechanism is more dominant in narcolepsy than in RBD.

  • PDF

Wind-driven Current in the East Sea Observed from Mini-met Drifters (기상뜰개로 관측된 동해에서의 취송류)

  • Lee, Dong-Kyu
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • A wind-driven current in the East Sea from Lagrangian measurements of wind and current at 15 m using MiniMet drifters was analyzed. Spectral analysis of the current from 217 pieces of a 10 day-long time series shows the dominant energy at the inertial frequency for the current at 15 m. Wind has energy peaks at a 0.2-0.5 cycles per day (cpd) frequency band. The power spectrum of the clockwise rotating component is predominant for the current and was 1.5-2 times larger than the anticlockwise rotating component for wind. Co-spectra between the wind and current show two peak frequency bands at subinertial frequency and 0.5-0.3 cpd. Coherences between the wind and current at those peak frequencies are significant with 95% confidence and phase differences were $90-100^{\circ}$. From the phase differences, the efolding depth is estimated as 17 m and this e-folding depth is smaller than the estimation by Chereskin's (1999) 25 m using a moored Acoustic Doppler Current Profiler and an anemometer installed at the surface buoy. The angle between the wind-driven current (or ageostrophic current) and wind from this study was also much larger than the global estimate by Rio and Hernandez (2003) using reanalysis wind and drifters. The possible explanation for the discrepancy comes from the fact that the current is driven by a wind of smaller length scale than 250 km but the satellite or the reanalysis products do not resolve winds of length scale smaller than 250 km. Large rms differences between Mini-Met and QuickSCAT wind on spatial lags smaller than 175 km substantiate this explanation.

Digital Watermarking of EZW Coded Image using ZTR symbol (EZW 비트열의 ZTR 심벌을 이용한 디지털 워터마킹)

  • Kim Hyun-Woo;Lee Ho-Keun;Lee Myong-Young;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • We proposed a method for embedding coded binary data into EZW bitstreams and extracting embedded data from EZW bitstreams using the traditional EZW decoder. EZW coder have two passes. The first pass, the dominant pass have four symbols, P, N, IZ, ZTR. The second pass is sub-ordinary pass which specifies the value of symbol. In the proposed methods, we use ZTR symbol in the dominant pass. We embed watermark into ZTR symbol in the highest frequency band which original image is transferred by wavelet transform. The proposed digital watermarking method shows good properties for robustness in the low bit rate. Accordingly, based on the proposed digital watermarking, video and 3D image watermarking will become a new area for research in the near future.

Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry (멀티간섭기법에 기반한 이온왜곡 보정기법의 보완)

  • Lee, Won-Jin;Jung, Hyung-Sup;Chae, Sung-Ho;Baek, Wonkyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 2015
  • Synthetic Aperture Radar Interferometry (InSAR) is affected by various noise source such as atmospheric artifact, orbital error, processing noise etc.. Especially, one of the dominant noise source for long-wave SAR system, such as ALOS PALSAR (L-band SAR satellite) is the ionosphere effect because phase delays on radar pulse through the ionosphere are proportional to the radar wavelength. To avoid misinterpret of phase signal in the interferogram, it is necessary to detect and correct ionospheric errors. Recently, a MAI (Multipler Aperture SAR Interferometry) based ionospheric correction method has been proposed and considered one of the effective method to reduce phase errors by ionospheric effect. In this paper, we introduce the MAI-based method for ionospheric correction. Moreover we propose an efficient method that apply the method over non-coherent area using directional filter. Finally, we apply the proposed method to the ALOS PALSAR pairs, which include the west sea coast region in Korea. A polynomial fitting method, which is frequently adopted in InSAR processing, has been applied for the mitigation of phase distortion by the orbital error. However, the interferogram still has low frequency of Sin pattern along the azimuth direction. In contrast, after we applied the proposed method for ionospheric correction, the low frequency pattern is mitigated and the profile results has stable phase variation values within ${\pm}1rad$. Our results show that this method provides a promising way to correct orbital and ionospheric artifact and would be important technique to improve the accuracy and the availability for L-band or P-band systems.