• Title/Summary/Keyword: Domestic Wastewater

Search Result 321, Processing Time 0.028 seconds

Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal (총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석)

  • Park, Hye-Young;Park, Sang-Min;Lee, Ki-Cheol;Kwon, Oh-Sang;Yu, Soon-Ju;Kim, Shin-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.212-221
    • /
    • 2011
  • Wastewater treatment plants (WWTPs) are required to meet the reinforced discharge standards which are differentiated as 0.2, 0.3 and 0.5 mg-TP/L for the district I, II and III, respectively. Although most of WWTPs are operating advanced biological phosphorus removal system, the supplementary phosphorus treatment facility using chemical addition should be required almost at all WWTPs. Therefore, water quality data from several exemplary full-scale plants operating phosphorus treatment process were analyzed to evaluate the reliability of removal performance. Additionally, a series of jar tests were conducted to find optimal coagulants dose for phosphorus removal by chemical precipitation and to describe characteristics of the reaction and sludge production. Chemical costs and the increasing sludge volume in physicochemical phosphorus removal process were estimated based on the results of jar tests. The minimum coagulant (aluminium sulfate and poly aluminium chloride) doses to keep TP concentration below 0.5 and 0.2 mg/L were around 25 and 30 mg/L (as $Al_2O_3$), respectively, in the mixed liquor of activated sludge. In the tertiary treatment facility, relatively lower coagulant doses of 1/12~1/3 the minimum doses for activated sludge were required to achieve the same TP concentrations of 0.2~0.5 mg/L. Increase in suspended solids concentration due to chemical precipitates in mixed liquor was estimated at 10~11%, compared to the concentration without chemical addition. When coagulant was added into mixed liquor, chemical (aluminium sulfate) cost was estimated to be 4~10 times higher than in secondary effluent coagulation/separation process. Sludge production to be wasted was also 4~10 times higher than secondary effluent coagulation/separation process.

Guidelines and Optimum Treatment for Agriculture Reuse of Reclaimed Water (농업적 용수재이용 수질기준을 고려한 적정 하수재처리에 관한 연구)

  • Jung, Kwang-Wook;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.356-368
    • /
    • 2003
  • Water quality of effluent from wastewater treatment plants (WWTPS) was reviewed to examine the feasibility of agricultural reuse using USEPA and WHO guidelines. It might meet the guidelines for BOD and SS, however, the most critical microbiological concentration was too high and further treatment is required. The pilot study of three treatments were performed to reduce microbiological concentrations. The UV irradiation was proved to be very effective in disinfection of secondary level effluent, and about 30 mW ${\cdot}$ s/$cm^2$ of dose was suggested to meet the even most stringent USEPA guidelines. Slow sand filter demonstrated effective removal of bacteria, and effluent concentration of total coliform (TC), fecal coliform (FC), and E. coli. dropped from about 10,000/100 mL to 300, 200, and 150 MPN/100 mL, respectively, showing over 95% removal. These level of bacterial concentration sufficiently meet the WHO guidelines ($10^3\;{\sim}\;10^5$ FC/100 mL), and could meet the more stringent USEPA guidelines (200 FC/100 mL) if properly applied. Slow sand filter also provided about 50% removal of SS, turbidity, and BOD in addition to bacterial removal. The removal efficiency of pond system was relatively poor, but still showed over 85% removal and effluent concentration of TC, FC, and E. coli was all below 10,000/100 mL. The pond system alone could meet the WHO guidelines, but hardly meet the USEPA guidelines and further treatment might be necessary. Overall, three methods evaluated in the study treat the effluent to meet the WHO microbiological guidelines for agricultural reuse. The UV disinfection and slow sand filter might also could the USEPA guidelines, while the pond system can hardly meet the USEPA guidelines if applied alone. The WHO and USEPA guidelines were made based on data from upland field agricultural system and may not be directly applicable to the paddy field agricultural system. Therefore, national standards for agricultural reuse of reclaimed water should be made considering domestic agricultural systems as well as international guidelines. Also, further investigation is recommended to develop optimum and feasible treatment measures for agricultural reuse of effluent from WWTPs.

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

Long-term Performance of Secondary dam Installed for Water Purification of Reservoir (호소의 수질개선을 위하여 설치한 부댐의 장기간 성능평가)

  • Kim, Bong-Kyun;Park, Jun-Seok;Won, Hee-Jae;Kim, Yun-Yung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.668-676
    • /
    • 2018
  • Most reservoirs in Korea have a low water depth and are small in size. Water pollution of the reservoir is serious because of the organic matter flowing from livestock wastewater, domestic sewage, and farmland. In this study, an attempt was made to improve the water purification effect by replacing the secondary dam installed in the depression area of the agricultural reservoir with the riprap dam. To evaluate the long-term performance, a riprap dam was installed in a reservoir in Gyeonggi province and water purification effect for 36 months was measured. The field test results showed that COD was 14.6%, SS 38.6%, T-N 9.5%, and T-P 11.2%. The concentrations in the influent water exhibited a significant change according to season, and the water purification effect increased with increasing concentration of influent water. The pollutant flowing into the lake from the depression area can be blocked effectively if the secondary riprap dam for water purification is installed in the agricultural reservoir.

Relationship between Pollution Factors and Environmental Variation in Waters around Masan Bay (마산만 주변 해역에서 오염인자와 해양환경변동과의 관계)

  • Shin, So-Young;Lee, Chung-Il;Hwang, Sun-Chool;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.69-79
    • /
    • 2004
  • This study focuses on the relationship between pollution factors around Masan, Changwon and Chinhae city considerd as main pollution sources and marine environment in Masan bay of Korea. Water quality data measured In Jinhae bay and environmental investigation data in Masan, Changwon and Jinhae cities from 1981 to 1998 were used for this study. Annual means and standard deviations of COD, DIN and DIP concentrations from 1981 to 1998 showed that both their concentration and fluctuations were higher in the inner part of Masan bay (region A) than near Somodo (region B). Sediment dredging in Masan bay had been done from 1990 to 1994. After dredging, COD concentration has been decreasing In surface layer. Also water pollution was gradually spreaded from the inner part to the outer part of the bay due to the continuous inflow of domestic sewage and industrial wastewater. In the late of 1990s, the pollution was heavier. DIN and DIP concentrations were found to be increased by establishment of industry complex and decreased by sewage treatment plant near the city adjacent to Jinhae bay, 1993. The correlation between COD, DIN and DIP changes and neighbor cities' pollution sources were calculated From 1981 to 1998, correlation coefficient (r) was over 0.8 except for the bottom of region A From 1981 to 1998, r between the DIP concentration and population was over 0.65 except for the surface of region A, and the r between the DIP and the number of factories was over 0.6 too, in region B.

  • PDF

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF

Optimization of Bisphenol A Biodegradation by Trametes versicolor (Trametes versicolor에 의한 Bisphenol A 생분해의 최적조건)

  • Kang, Ae-Ri;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • Optimal conditions for the biodegradation of endocrine-disrupting bisphenol A (BPA) were examined for the white rot fungus Trametes versicolor isolated in Korea. T. versicolor degraded 100% of 50 mg/L bisphenol A during 12 hr in yeast extract-malt extract-glucose (YMG) medium. When BPA was added to the 5-day preincubated fungal culture in YMG medium, all BPA was removed in 2 hr. T. versicolor could efficiently degrade BPA at $35^{\circ}C$, pH 6 in YMG medium. T. versicolor could more easily remove BPA of $1{\sim}25\;mg/L$ than that of higher concentrations ($50{\sim}100\;mg/L$) in YMG medium. T. versicolor degraded 100% of 50 mg/L BPA for 36 h in a minimal medium, which is lower degradation rate than that in YMG medium. Optimal conditions for BPA biodegradation in the minimal medium were similar to those in YMG medium. When BPA (50 mg/L) was added into domestic wastewater, it could be completely removed by T. versicolor. During the biodegradation of BPA by T. versicolor in YMG medium, its estrogenic activity decreased.

Nitrogen Budget of South Korea in 2008: Evaluation of Non-point Source Pollution and $N_2O$ Emission (2008년도 대한민국 질소수지 연구: 비점오염증가 및 $N_2O$발생량산정)

  • Nam, Yock-Hyoun;An, Sang-Woo;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • The main objective of this research was to estimate Nitrogen budget of South Korea in 2008. Input-output budgets for nitrogen fluxes were categorized into three sections: cities, agricultural area, and forest. Chemical and biological fixation, dry and wet deposition, imported food and feed were used as the nitrogen input. Crop uptake, volatilization, denitrification, leaching, runoff, and forest consumption were used as the nitrogen outputs. Annual total nitrogen input was 1,294,155 ton/yr, and output was 632,228 ton/yr. Comparison with a previous research in 2005 indicates that nitrogen input was decreased by 1.9% due to the decrease in nitrogen fertilizer while nitrogen output was decreased by 6.3%. Non-point source (NPS) pollution was also estimated by mass balance approach, which increased by 22% than the previous research in 2005. The emission of nitrous oxide ($N_2O$) caused by denitrification was newly examined in this research. About 8,289 ton/yr of $N_2O$ was released from agriculture area and domestic wastewater treatment plant.

Effects of Disinfectant Concentration, pH, Temperature, Ammonia, and Suspended Solids on the Chlorine Disinfection of Combined Sewer Overflow (소독제 농도, pH, 온도, 암모니아 농도, 부유물질이 강우 월류수 염소 소독에 미치는 영향)

  • Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.685-690
    • /
    • 2014
  • The treatment of combined sewer overflow (CSO) is one of potential concerns in domestic wastewater treatment in Korea due to the pre-announce of CSO regulations. This work investigated the effects of disinfectant (NaOCl) concentration (0.11 to 4.0 mg $Cl_2/L$), pH (6.5 to 8.0), temperature (15 to $25^{\circ}C$), ammonia (10 to 41 mg N/L), and suspended solids (91 to 271 mg SS/L) on the chlorine disinfection of CSO. The effect of NaOCl concentration on the pseudo-$1^{st}$ order reaction rate for total coliform inactivation was described well with a saturation-type model with the half-velocity constant of 1.212 mg/L. The total coliform inactivation reaction rate decreased with SS and pH, and increased with temperature. Ammonia in the examined range did not affect the disinfection kinetics. A chlorine contact tank with the injection chlorine level of 1 mg $Cl_2/L$ and the hydraulic retention time of 1.25 min is estimated to reduce total coliform from $1{\times}10^5MPN/mL$ to 1,000 MPN/mL at 271 mg SS/L, $15^{\circ}C$, and pH 8.0. Chlorine would be a proper option for the disinfection of CSO.

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.