• Title/Summary/Keyword: Document-Based Malware

Search Result 12, Processing Time 0.026 seconds

The Study on YARA Rules and Detection Tool for HWP Document-Type Malware (HWP 문서형 악성코드 탐지를 위한 YARA규칙 및 탐지도구에 관한 연구)

  • Joongjin Kook;Heechan Won;Sungwoo Kim;Dohee Kim;Junghoon Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.108-114
    • /
    • 2024
  • This study details the development of YARA rules and a detection program specifically designed to identify malware in HWP documents, a common target in cyber-attacks within South Korea. By thoroughly analyzing the unique structural features of HWP files, we developed precise YARA rules that were subsequently integrated into a custom detection tool. The program was rigorously tested on a dataset of benign and malicious HWP documents, demonstrating high detection accuracy and a low false-positive rate. This research offers a robust and practical solution for enhancing cybersecurity in environments where HWP files are frequently used, contributing valuable tools for the targeted detection of document-based malware.

  • PDF

Detection of Malicious PDF based on Document Structure Features and Stream Objects

  • Kang, Ah Reum;Jeong, Young-Seob;Kim, Se Lyeong;Kim, Jonghyun;Woo, Jiyoung;Choi, Sunoh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.85-93
    • /
    • 2018
  • In recent years, there has been an increasing number of ways to distribute document-based malicious code using vulnerabilities in document files. Because document type malware is not an executable file itself, it is easy to bypass existing security programs, so research on a model to detect it is necessary. In this study, we extract main features from the document structure and the JavaScript contained in the stream object In addition, when JavaScript is inserted, keywords with high occurrence frequency in malicious code such as function name, reserved word and the readable string in the script are extracted. Then, we generate a machine learning model that can distinguish between normal and malicious. In order to make it difficult to bypass, we try to achieve good performance in a black box type algorithm. For an experiment, a large amount of documents compared to previous studies is analyzed. Experimental results show 98.9% detection rate from three different type algorithms. SVM, which is a black box type algorithm and makes obfuscation difficult, shows much higher performance than in previous studies.

A Study on Email Security through Proactive Detection and Prevention of Malware Email Attacks (악성 이메일 공격의 사전 탐지 및 차단을 통한 이메일 보안에 관한 연구)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.672-678
    • /
    • 2021
  • New malware continues to increase and become advanced by every year. Although various studies are going on executable files to diagnose malicious codes, it is difficult to detect attacks that internalize malicious code threats in emails by exploiting non-executable document files, malicious URLs, and malicious macros and JS in documents. In this paper, we introduce a method of analyzing malicious code for email security through proactive detection and blocking of malicious email attacks, and propose a method for determining whether a non-executable document file is malicious based on AI. Among various algorithms, an efficient machine learning modeling is choosed, and an ML workflow system to diagnose malicious code using Kubeflow is proposed.

Forgery Detection Mechanism with Abnormal Structure Analysis on Office Open XML based MS-Word File

  • Lee, HanSeong;Lee, Hyung-Woo
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.47-57
    • /
    • 2019
  • We examine the weaknesses of the existing OOXML-based MS-Word file structure, and analyze how data concealment and forgery are performed in MS-Word digital documents. In case of forgery by including hidden information in MS-Word digital document, there is no difference in opening the file with the MS-Word Processor. However, the computer system may be malfunctioned by malware or shell code hidden in the digital document. If a malicious image file or ZIP file is hidden in the document by using the structural vulnerability of the MS-Word document, it may be infected by ransomware that encrypts the entire file on the disk even if the MS-Word file is normally executed. Therefore, it is necessary to analyze forgery and alteration of digital document through internal structure analysis of MS-Word file. In this paper, we designed and implemented a mechanism to detect this efficiently and automatic detection software, and presented a method to proactively respond to attacks such as ransomware exploiting MS-Word security vulnerabilities.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

A Study of Office Open XML Document-Based Malicious Code Analysis and Detection Methods (Office Open XML 문서 기반 악성코드 분석 및 탐지 방법에 대한 연구)

  • Lee, Deokkyu;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.429-442
    • /
    • 2020
  • The proportion of attacks via office documents is increasing in recent incidents. Although the security of office applications has been strengthened gradually, the attacks through the office documents are still effective due to the sophisticated use of social engineering techniques and advanced attack techniques. In this paper, we propose a method for detecting malicious OOXML(Office Open XML) documents and a framework for detection. To do this, malicious files used in the attack and benign files were collected from the malicious code repository and the search engine. By analyzing the malicious code types of collected files, we identified six "suspicious object" elements that are meaningful in determining whether they are malicious in a document. In addition, we implemented an OOXML document-based malware detection framework based on the detection method to classify the collected files and found that 98.45% of malicious filesets were detected.

Efficient Hangul Word Processor (HWP) Malware Detection Using Semi-Supervised Learning with Augmented Data Utility Valuation (효율적인 HWP 악성코드 탐지를 위한 데이터 유용성 검증 및 확보 기반 준지도학습 기법)

  • JinHyuk Son;Gihyuk Ko;Ho-Mook Cho;Young-Kuk Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2024
  • With the advancement of information and communication technology (ICT), the use of electronic document types such as PDF, MS Office, and HWP files has increased. Such trend has led the cyber attackers increasingly try to spread malicious documents through e-mails and messengers. To counter such attacks, AI-based methodologies have been actively employed in order to detect malicious document files. The main challenge in detecting malicious HWP(Hangul Word Processor) files is the lack of quality dataset due to its usage is limited in Korea, compared to PDF and MS-Office files that are highly being utilized worldwide. To address this limitation, data augmentation have been proposed to diversify training data by transforming existing dataset, but as the usefulness of the augmented data is not evaluated, augmented data could end up harming model's performance. In this paper, we propose an effective semi-supervised learning technique in detecting malicious HWP document files, which improves overall AI model performance via quantifying the utility of augmented data and filtering out useless training data.

A Research of Anomaly Detection Method in MS Office Document (MS 오피스 문서 파일 내 비정상 요소 탐지 기법 연구)

  • Cho, Sung Hye;Lee, Sang Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Microsoft Office is an office suite of applications developed by Microsoft. Recently users with malicious intent customize Office files as a container of the Malware because MS Office is most commonly used word processing program. To attack target system, many of malicious office files using a variety of skills and techniques like macro function, hiding shell code inside unused area, etc. And, people usually use two techniques to detect these kinds of malware. These are Signature-based detection and Sandbox. However, there is some limits to what it can afford because of the increasing complexity of malwares. Therefore, this paper propose methods to detect malicious MS office files in Computer forensics' way. We checked Macros and potential problem area with structural analysis of the MS Office file for this purpose.

Development of an open source-based APT attack prevention Chrome extension (오픈소스 기반 APT 공격 예방 Chrome extension 개발)

  • Kim, Heeeun;Shon, Taeshik;Kim, Duwon;Han, Gwangseok;Seong, JiHoon
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.3-17
    • /
    • 2021
  • Advanced persistent threat (APT) attacks are attacks aimed at a particular entity as a set of latent and persistent computer hacking processes. These APT attacks are usually carried out through various methods, including spam mail and disguised banner advertising. The same name is also used for files, since most of them are distributed via spam mail disguised as invoices, shipment documents, and purchase orders. In addition, such Infostealer attacks were the most frequently discovered malicious code in the first week of February 2021. CDR is a 'Content Disarm & Reconstruction' technology that can prevent the risk of malware infection by removing potential security threats from files and recombining them into safe files. Gartner, a global IT advisory organization, recommends CDR as a solution to attacks in the form of attachments. There is a program using CDR techniques released as open source is called 'Dangerzone'. The program supports the extension of most document files, but does not support the extension of HWP files that are widely used in Korea. In addition, Gmail blocks malicious URLs first, but it does not block malicious URLs in mail systems such as Naver and Daum, so malicious URLs can be easily distributed. Based on this problem, we developed a 'Dangerzone' program that supports the HWP extension to prevent APT attacks, and a Chrome extension that performs URL checking in Naver and Daum mail and blocking banner ads.

Convolutional Neural Network-based Malware Classification Method utilizing Local Feature-based Global Image (로컬 특징 기반 글로벌 이미지를 사용한 CNN 기반의 악성코드 분류 방법)

  • Jang, Sejun;Sung, Yunsick
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.222-223
    • /
    • 2020
  • 최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.