• 제목/요약/키워드: Document-Based Malware

검색결과 12건 처리시간 0.02초

HWP 문서형 악성코드 탐지를 위한 YARA규칙 및 탐지도구에 관한 연구 (The Study on YARA Rules and Detection Tool for HWP Document-Type Malware)

  • 국중진;원희찬;김성우;김도희;이정훈
    • 반도체디스플레이기술학회지
    • /
    • 제23권3호
    • /
    • pp.108-114
    • /
    • 2024
  • This study details the development of YARA rules and a detection program specifically designed to identify malware in HWP documents, a common target in cyber-attacks within South Korea. By thoroughly analyzing the unique structural features of HWP files, we developed precise YARA rules that were subsequently integrated into a custom detection tool. The program was rigorously tested on a dataset of benign and malicious HWP documents, demonstrating high detection accuracy and a low false-positive rate. This research offers a robust and practical solution for enhancing cybersecurity in environments where HWP files are frequently used, contributing valuable tools for the targeted detection of document-based malware.

  • PDF

Detection of Malicious PDF based on Document Structure Features and Stream Objects

  • Kang, Ah Reum;Jeong, Young-Seob;Kim, Se Lyeong;Kim, Jonghyun;Woo, Jiyoung;Choi, Sunoh
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.85-93
    • /
    • 2018
  • In recent years, there has been an increasing number of ways to distribute document-based malicious code using vulnerabilities in document files. Because document type malware is not an executable file itself, it is easy to bypass existing security programs, so research on a model to detect it is necessary. In this study, we extract main features from the document structure and the JavaScript contained in the stream object In addition, when JavaScript is inserted, keywords with high occurrence frequency in malicious code such as function name, reserved word and the readable string in the script are extracted. Then, we generate a machine learning model that can distinguish between normal and malicious. In order to make it difficult to bypass, we try to achieve good performance in a black box type algorithm. For an experiment, a large amount of documents compared to previous studies is analyzed. Experimental results show 98.9% detection rate from three different type algorithms. SVM, which is a black box type algorithm and makes obfuscation difficult, shows much higher performance than in previous studies.

악성 이메일 공격의 사전 탐지 및 차단을 통한 이메일 보안에 관한 연구 (A Study on Email Security through Proactive Detection and Prevention of Malware Email Attacks)

  • 유지현
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.672-678
    • /
    • 2021
  • 시간이 지날수록 새로운 맬웨어는 계속 증가하고, 점점 고도화되고 있다. 악성 코드를 진단하기 위해 실행파일에 관한 연구는 다양하게 진행되고 있으나, 비실행 문서파일과 악성 URL, 문서 내 악성 매크로 및 JS 등을 악용하여 이메일에 악성 코드 위협을 내재화한 공격은 탐지하기 어려운 것이 현실이다. 본 논문에서는 악성 이메일 공격의 사전 탐지 및 차단을 통한 이메일 보안을 위해 악성 코드를 분석하는 방법을 소개하고, AI 기반으로 비실행 문서파일의 악성 여부를 판단하는 방법을 제시한다. 다양한 알고리즘 중에 효율적인 학습 모델링 방법을 채택하고 Kubeflow를 활용하여 악성 코드를 진단하는 ML 워크플로 시스템을 제안하고자 한다.

Forgery Detection Mechanism with Abnormal Structure Analysis on Office Open XML based MS-Word File

  • Lee, HanSeong;Lee, Hyung-Woo
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.47-57
    • /
    • 2019
  • We examine the weaknesses of the existing OOXML-based MS-Word file structure, and analyze how data concealment and forgery are performed in MS-Word digital documents. In case of forgery by including hidden information in MS-Word digital document, there is no difference in opening the file with the MS-Word Processor. However, the computer system may be malfunctioned by malware or shell code hidden in the digital document. If a malicious image file or ZIP file is hidden in the document by using the structural vulnerability of the MS-Word document, it may be infected by ransomware that encrypts the entire file on the disk even if the MS-Word file is normally executed. Therefore, it is necessary to analyze forgery and alteration of digital document through internal structure analysis of MS-Word file. In this paper, we designed and implemented a mechanism to detect this efficiently and automatic detection software, and presented a method to proactively respond to attacks such as ransomware exploiting MS-Word security vulnerabilities.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Office Open XML 문서 기반 악성코드 분석 및 탐지 방법에 대한 연구 (A Study of Office Open XML Document-Based Malicious Code Analysis and Detection Methods)

  • 이덕규;이상진
    • 정보보호학회논문지
    • /
    • 제30권3호
    • /
    • pp.429-442
    • /
    • 2020
  • 최근 침해사고에서 오피스 문서를 통한 공격 비중이 높아지고 있다. 오피스 문서 어플리케이션의 보안이 점차 강화되어왔음에도 불구하고 공격기술의 고도화, 사회공학 기법의 복합적 사용으로 현재도 오피스 문서를 통한 공격이 유효하다. 본 논문에서는 악성 OOXML(Office Open XML) 문서 탐지 방법과 탐지를 위한 프레임워크를 제안한다. 이를 위해 공격에 사용된 악성파일과 정상파일을 악성코드 저장소와 검색엔진에서 수집하였다. 수집한 파일들의 악성코드 유형을 분석하여 문서 내 악성 여부를 판단하는데 유의미한 의심 개체요소 6가지를 구분하였으며, 악성코드 유형별 개체요소 탐지 방법을 제안한다. 또한, 탐지 방법을 바탕으로 OOXML 문서 기반 악성코드 탐지 프레임워크를 구현하여 수집된 파일을 분류한 결과 악성 파일셋 중 98.45%에 대해 탐지함을 확인하였다.

효율적인 HWP 악성코드 탐지를 위한 데이터 유용성 검증 및 확보 기반 준지도학습 기법 (Efficient Hangul Word Processor (HWP) Malware Detection Using Semi-Supervised Learning with Augmented Data Utility Valuation)

  • 손진혁;고기혁;조호묵;김영국
    • 정보보호학회논문지
    • /
    • 제34권1호
    • /
    • pp.71-82
    • /
    • 2024
  • 정보통신기술(ICT) 고도화에 따라 PDF, MS Office, HWP 파일로 대표되는 전자 문서형 파일의 활용이 많아졌고, 공격자들은 이 상황을 놓치지 않고 문서형 악성코드를 이메일과 메신저를 통해 전달하여 감염시키는 피해사례가 많아졌다. 이러한 피해를 막고자 AI를 사용한 악성코드 탐지 연구가 진행되고 있으나, PDF나 MS-Office와 같이 전 세계적으로 활용성이 높은 전자 문서형 파일에 비해 주로 국내에서만 활용되는 HWP(한글 워드 프로세서) 문서 파일은 양질의 정상 또는 악성 데이터가 부족하여 지속되는 공격에 강건한 모델 생성에 한계점이 존재한다. 이러한 한계점을 해결하기 위해 기존 수집된 데이터를 변형하여 학습 데이터 규모를 늘리는 데이터 증강 방식이 제안 되었으나, 증강된 데이터의 유용성을 평가하지 않아 불확실한 데이터를 모델 학습에 활용할 가능성이 있다. 본 논문에서는 HWP 악성코드 탐지에 있어 데이터의 유용성을 정량화하고 이에 기반하여 학습에 유용한 증강 데이터만을 활용하여 기존보다 우수한 성능의 AI 모델을 학습하는 준지도학습 기법을 제안한다.

MS 오피스 문서 파일 내 비정상 요소 탐지 기법 연구 (A Research of Anomaly Detection Method in MS Office Document)

  • 조성혜;이상진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권2호
    • /
    • pp.87-94
    • /
    • 2017
  • 최근 각종 공문서와 증빙 서류를 비롯하여 대부분의 문서가 디지털 데이터의 형태로 사용되고 있다. 특히 MS 오피스는 전 세계적으로 공공기관, 기업, 학교, 가정 등 다양한 곳에서 가장 많이 사용하고 있는 문서 편집 소프트웨어로써 악의적인 목적을 가진 사용자들이 해당 문서 프로그램의 범용성을 이용하여 MS 오피스 문서 파일을 악성 행위를 위한 매개체로 사용하고 있으며, 최근에는 단순한 사용자뿐만 아니라 국내외 정부 기관과 주요기업을 비롯하여 기반시설에서도 MS 오피스 문서 파일 형태의 악성코드가 유입되고 있다. MS 오피스 문서에 악성 코드를 삽입하는 방법은 단순히 미할당 영역에 은닉하는 방법을 사용할 뿐만 아니라 매크로 기능을 이용하는 등 다양한 방법을 통해 점점 정교한 형태로 진화되고 있다. 이러한 악성 코드들을 탐지하기 위해서 시그니처를 이용하거나 샌드박스를 이용한 탐지방법이 존재하지만, 유동적이고 복잡해지는 악성 코드들을 탐지하기에는 한계가 있다. 따라서 본 논문에서는 디지털 포렌식 관점에서 MS 오피스 문서 분석에 필요한 주요 메타데이터와 파일 포맷 구조 분석을 통해 매크로 영역과 그 외 악성 코드가 삽입될 가능성이 존재하는 영역들을 확인함으로써 MS 오피스 문서 파일 내 비정상 요소를 탐지하는 기법을 제안한다.

오픈소스 기반 APT 공격 예방 Chrome extension 개발 (Development of an open source-based APT attack prevention Chrome extension)

  • 김희은;손태식;김두원;한광석;성지훈
    • Journal of Platform Technology
    • /
    • 제9권3호
    • /
    • pp.3-17
    • /
    • 2021
  • APT(advanced persistent threat) 공격이란 잠행적이고 지속적인 컴퓨터 해킹 프로세스들의 집합으로 특정 실체를 목표로 행해지는 공격이다[1]. 이러한 APT 공격은 대개 스팸 메일과 위장된 배너 광고 등 다양한 방식을 통해서 이뤄진다. 대부분 송장, 선적 서류(Shipment Document), 구매 주문서(P.O.-Purchase Order) 등으로 위장한 스팸 메일을 통해 유포되기 때문에 파일 이름도 동일하게 위와 같은 이름이 사용된다. 그리고 이러한 정보탈취형(Infostealer) 공격이 가장 2021년 2월 첫째 주 가장 많이 발견된 악성 코드였다[2]. Content Disarm & Reconstruction(이하 CDR)은 백신, 샌드박스에서 막아내지 못한 보안 위협에 대하여 파일 내 잠재적 보안 위협 요소를 원천 제거 후 안전한 파일로 재조합하여 악성코드 감염 위험을 사전에 방지할 수 있는 '콘텐츠 무해화 & 재조합' 기술이다. 글로벌 IT 자문기관 '가트너(Gartner)'에서는 첨부파일 형태의 공격에 대한 솔루션으로 CDR을 추천하고 있다. Open source로 공개된 CDR 기법을 사용하는 프로그램으로 'Dangerzone'이 있다. 해당 프로그램은 대부분의 문서 파일의 확장자를 지원하지만, 한국에서 많이 사용되는 HWP 파일의 확장자를 지원하지 않고 있다. 그리고 Gmail은 악성 URL을 1차적으로 차단해주지만 Naver, Daum 등의 메일 시스템에서는 악성 URL을 차단하지 않아 손쉽게 악성 URL을 유포할 수 있다. 이러한 문제점에서 착안하여 APT 공격을 예방하기 위한 HWP 확장자를 지원하는 'Dangerzone' 프로그램, Naver, Daum 메일 내 URL 검사, 배너형 광고 차단의 기능을 수행하는 Chrome extension을 개발하는 프로젝트를 진행했다.

로컬 특징 기반 글로벌 이미지를 사용한 CNN 기반의 악성코드 분류 방법 (Convolutional Neural Network-based Malware Classification Method utilizing Local Feature-based Global Image)

  • 장세준;성연식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.222-223
    • /
    • 2020
  • 최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.