• Title/Summary/Keyword: Document Expansion

Search Result 95, Processing Time 0.027 seconds

Expected Matching Score Based Document Expansion for Fast Spoken Document Retrieval (고속 음성 문서 검색을 위한 Expected Matching Score 기반의 문서 확장 기법)

  • Seo, Min-Koo;Jung, Gue-Jun;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.71-74
    • /
    • 2006
  • Many works have been done in the field of retrieving audio segments that contain human speeches without captions. To retrieve newly coined words and proper nouns, subwords were commonly used as indexing units in conjunction with query or document expansion. Among them, document expansion with subwords has serious drawback of large computation overhead. Therefore, in this paper, we propose Expected Matching Score based document expansion that effectively reduces computational overhead without much loss in retrieval precisions. Experiments have shown 13.9 times of speed up at the loss of 0.2% in the retrieval precision.

  • PDF

A Study on the Improvement of Retrieval Effectiveness to Clustered and Filtered Document through Query Expansion (질의어 확장에 기반을 둔 클러스터링 및 필터링 문서의 검색효율 제고에 관한 연구)

  • 노동조
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.14 no.1
    • /
    • pp.219-230
    • /
    • 2003
  • The purpose of this study is to improve of retrieval effectiveness to clustered and filtered document through query expansion. The result of this research prove that extended queries and documents, information in encyclopedia, clustering and filtering techniques are effective to promote retrieval effectiveness.

  • PDF

Headword Finding System Using Document Expansion (문서 확장을 이용한 표제어 검색시스템)

  • Kim, Jae-Hoon;Kim, Hyung-Chul
    • Journal of Information Management
    • /
    • v.42 no.4
    • /
    • pp.137-154
    • /
    • 2011
  • A headword finding system is defined as an information retrieval system using a word gloss as a query. We use the gloss as a document in order to implement such a system. Generally the gloss is very short in length and then makes very difficult to find the most proper headword for a given query. To alleviate this problem, we expand the document using the concept of query expansion in information retrieval. In this paper, we use 2 document expansion methods : gloss expansion and similar word expansion. The former is the process of inserting glosses of words, which include in the document, into a seed document. The latter is also the process of inserting similar words into a seed document. We use a featureless clustering algorithm for getting the similar words. The performance (r-inclusion rate) amounts to almost 100% when the queries are word glosses and r is 16, and to 66.9% when the queries are written in person by users. Through several experiments, we have observed that the document expansions are very useful for the headword finding system. In the future, new measures including the r-inclusion rate of our proposed measure are required for performance evaluation of headword finding systems and new evaluation sets are also needed for objective assessment.

Feature Expansion based on LDA Word Distribution for Performance Improvement of Informal Document Classification (비격식 문서 분류 성능 개선을 위한 LDA 단어 분포 기반의 자질 확장)

  • Lee, Hokyung;Yang, Seon;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1008-1014
    • /
    • 2016
  • Data such as Twitter, Facebook, and customer reviews belong to the informal document group, whereas, newspapers that have grammar correction step belong to the formal document group. Finding consistent rules or patterns in informal documents is difficult, as compared to formal documents. Hence, there is a need for additional approaches to improve informal document analysis. In this study, we classified Twitter data, a representative informal document, into ten categories. To improve performance, we revised and expanded features based on LDA(Latent Dirichlet allocation) word distribution. Using LDA top-ranked words, the other words were separated or bundled, and the feature set was thus expanded repeatedly. Finally, we conducted document classification with the expanded features. Experimental results indicated that the proposed method improved the micro-averaged F1-score of 7.11%p, as compared to the results before the feature expansion step.

XML Information Retrieval by Document Filtering and Query Expansion Based on Ontology (온톨로지 기반 문서여과 및 질의확장에 의한 XML 정보검색)

  • Kim Myung Sook;Kong Yong-Hae
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.596-605
    • /
    • 2005
  • Conventional XML query methods such as simple keyword match or structural query expansion are not sufficient to catch the underlying information in the documents. Moreover, these methods inefficiently try to query all the documents. This paper proposes document tittering and query expansion methods that are based on ontology. Using ontology, we construct a universal DTD that can filter off unnecessary documents. Then, query expansion method is developed through the analysis of concept hierarchy and association among concepts. The proposed methods are applied on variety of sample XML documents to test the effectiveness.

  • PDF

Incorporating Deep Median Networks for Arabic Document Retrieval Using Word Embeddings-Based Query Expansion

  • Yasir Hadi Farhan;Mohanaad Shakir;Mustafa Abd Tareq;Boumedyen Shannaq
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.3
    • /
    • pp.36-48
    • /
    • 2024
  • The information retrieval (IR) process often encounters a challenge known as query-document vocabulary mismatch, where user queries do not align with document content, impacting search effectiveness. Automatic query expansion (AQE) techniques aim to mitigate this issue by augmenting user queries with related terms or synonyms. Word embedding, particularly Word2Vec, has gained prominence for AQE due to its ability to represent words as real-number vectors. However, AQE methods typically expand individual query terms, potentially leading to query drift if not carefully selected. To address this, researchers propose utilizing median vectors derived from deep median networks to capture query similarity comprehensively. Integrating median vectors into candidate term generation and combining them with the BM25 probabilistic model and two IR strategies (EQE1 and V2Q) yields promising results, outperforming baseline methods in experimental settings.

Word Embeddings-Based Pseudo Relevance Feedback Using Deep Averaging Networks for Arabic Document Retrieval

  • Farhan, Yasir Hadi;Noah, Shahrul Azman Mohd;Mohd, Masnizah;Atwan, Jaffar
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.2
    • /
    • pp.1-17
    • /
    • 2021
  • Pseudo relevance feedback (PRF) is a powerful query expansion (QE) technique that prepares queries using the top k pseudorelevant documents and choosing expansion elements. Traditional PRF frameworks have robustly handled vocabulary mismatch corresponding to user queries and pertinent documents; nevertheless, expansion elements are chosen, disregarding similarity to the original query's elements. Word embedding (WE) schemes comprise techniques of significant interest concerning QE, that falls within the information retrieval domain. Deep averaging networks (DANs) defines a framework relying on average word presence passed through multiple linear layers. The complete query is understandably represented using the average vector comprising the query terms. The vector may be employed for determining expansion elements pertinent to the entire query. In this study, we suggest a DANs-based technique that augments PRF frameworks by integrating WE similarities to facilitate Arabic information retrieval. The technique is based on the fundamental that the top pseudo-relevant document set is assessed to determine candidate element distribution and select expansion terms appropriately, considering their similarity to the average vector representing the initial query elements. The Word2Vec model is selected for executing the experiments on a standard Arabic TREC 2001/2002 set. The majority of the evaluations indicate that the PRF implementation in the present study offers a significant performance improvement compared to that of the baseline PRF frameworks.

Research on Function and Policy for e-Government System using Semantic Technology (전자정부내 의미기반 기술 도입에 따른 기능 및 정책 연구)

  • Go, Gwang-Seop;Jang, Yeong-Cheol;Lee, Chang-Hun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.79-87
    • /
    • 2007
  • This paper aims to offer a solution based on semantic document classification to improve e-Government utilization and efficiency for people using their own information retrieval system and linguistic expression Generally, semantic document classification method is an approach that classifies documents based on the diverse relationships between keywords in a document without fully describing hierarchial concepts between keywords. Our approach considers the deep meanings within the context of the document and radically enhances the information retrieval performance. Concept Weight Document Classification(CoWDC) method, which goes beyond using exist ing keyword and simple thesaurus/ontology methods by fully considering the concept hierarchy of various concepts is proposed, experimented, and evaluated. With the recognition that in order to verify the superiority of the semantic retrieval technology through test results of the CoWDC and efficiently integrate it into the e-Government, creation of a thesaurus, management of the operating system, expansion of the knowledge base and improvements in search service and accuracy at the national level were needed.

  • PDF

Genetic Clustering with Semantic Vector Expansion (의미 벡터 확장을 통한 유전자 클러스터링)

  • Song, Wei;Park, Soon-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • This paper proposes a new document clustering system using fuzzy logic-based genetic algorithm (GA) and semantic vector expansion technology. It has been known in many GA papers that the success depends on two factors, the diversity of the population and the capability to convergence. We use the fuzzy logic-based operators to adaptively adjust the influence between these two factors. In traditional document clustering, the most popular and straightforward approach to represent the document is vector space model (VSM). However, this approach not only leads to a high dimensional feature space, but also ignores the semantic relationships between some important words, which would affect the accuracy of clustering. In this paper we use latent semantic analysis (LSA)to expand the documents to corresponding semantic vectors conceptually, rather than the individual terms. Meanwhile, the sizes of the vectors can be reduced drastically. We test our clustering algorithm on 20 news groups and Reuter collection data sets. The results show that our method outperforms the conventional GA in various document representation environments.

Query Expansion and Term Weighting Method for Document Filtering (문서필터링을 위한 질의어 확장과 가중치 부여 기법)

  • Shin, Seung-Eun;Kang, Yu-Hwan;Oh, Hyo-Jung;Jang, Myung-Gil;Park, Sang-Kyu;Lee, Jae-Sung;Seo, Young-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.743-750
    • /
    • 2003
  • In this paper, we propose a query expansion and weighting method for document filtering to increase precision of the result of Web search engines. Query expansion for document filtering uses ConceptNet, encyclopedia and documents of 10% high similarity. Term weighting method is used for calculation of query-documents similarity. In the first step, we expand an initial query into the first expanded query using ConceptNet and encyclopedia. And then we weight the first expanded query and calculate the first expanded query-documents similarity. Next, we create the second expanded query using documents of top 10% high similarity and calculate the second expanded query- documents similarity. We combine two similarities from the first and the second step. And then we re-rank the documents according to the combined similarities and filter off non-relevant documents with the lower similarity than the threshold. Our experiments showed that our document filtering method results in a notable improvement in the retrieval effectiveness when measured using both precision-recall and F-Measure.