1 |
Croft, W. B., Metzler, D., & Strohman, T. (2010). Search engines: Information retrieval in practice. Addison-Wesley.
|
2 |
Darwish, K., & Mubarak, H. (2016, May 23-28). Farasa: A new fast and accurate Arabic word segmenter. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.) Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC'16) (pp. 1070-1074). European Language Resources Association.
|
3 |
ALMasri, M., Berrut, C., & Chevallet, J.-P. (2016, March 20-23). A comparison of deep learning based query expansion with pseudo-relevance feedback and mutual information. In N. Ferro, F. Crestani, M.-F. Moens, J. Mothe, F. Silvestri, G. M. Di Nunzio, C. Hauff, & G. Silvello (Eds.), Proceedings of the 38th European Conference on IR Research (pp. 709-715). Springer. https://doi.org/10.1007/978-3-319-30671-1_57.
DOI
|
4 |
Alsmearat, K., Al-Ayyoub, M., & Al-Shalabi, R. (2014, November 10-13). An extensive study of the Bag-of-Words approach for gender identification of Arabic articles. In A. Bouras, Z. Tari, A. Erradi, & S. Abdelwahed (Eds.), Proceedings of the 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (pp. 601-608). IEEE. https://doi.org/10.1109/AICCSA.2014.7073254.
DOI
|
5 |
Azad, H. K., & Deepak, A. (2019). Query expansion techniques for information retrieval: A survey. Information Processing & Management, 56(5), 1698-1735. https://doi.org/10.1016/j.ipm.2019.05.009.
DOI
|
6 |
Fernandez-Reyes, F. C., Hermosillo-Valadez, J., & Montes-y-Gomez, M. (2018). A prospect-guided global query expansion strategy using word embeddings. Information Processing & Management, 54(1), 1-13. https://doi.org/10.1016/j.ipm.2017.09.001.
DOI
|
7 |
Esposito, M., Damiano, E., Minutolo, A., De Pietro, G., & Fujita, H. (2020). Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering. Information Sciences, 514, 88-105. https://doi.org/10.1016/j.ins.2019.12.002.
DOI
|
8 |
Farghaly, A., & Shaalan, K. (2009). Arabic natural language processing: Challenges and solutions. ACM Transactions on Asian Language Information Processing, 8(4), 14. https://doi.org/10.1145/1644879.1644881.
DOI
|
9 |
Farhan, Y. H., Noah, S. A. M., & Mohd, M. (2020). Survey of automatic query expansion for arabic text retrieval. Journal of Information Science Theory and Practice, 8(4), 67-86. https://doi.org/10.1633/JISTaP.2020.8.4.6.
DOI
|
10 |
Franco-Salvador, M., Rangel, F., Rosso, P., Taule, M., & Martit, M. A. (2015, September 8-11). Language variety identification using distributed representations of words and documents. In J. Mothe, J. Savoy, J. Kamps, K. Pinel-Sauvagnat, G. Jones, E. San Juan, L. Capellato, & N. Ferro (Eds.), Proceedings of the 6th International Conference of the CLEF Association, CLEF'15 (pp. 28-40). Springer. https://doi.org/10.1007/978-3-319-24027-5_3.
DOI
|
11 |
Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37(1), 141-188.
DOI
|
12 |
Diaz, F., Mitra, B., & Craswell, N. (2016, August 7-12). Query expansion with locally-trained word embeddings. In K. Erk, & N. A. Smith (Eds.), Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (pp. 367-377). Association for Computational Linguistics. https://doi.org/10.18653/v1/P16-1035.
DOI
|
13 |
El Mahdaouy, A., El Alaoui, S. O., & Gaussier, E. (2019). Word-embedding-based pseudo-relevance feedback for Arabic information retrieval. Journal of Information Science, 45(4), 429-442. https://doi.org/10.1177%2F0165551518792210.
DOI
|
14 |
Fang, H., & Zhai, C. (2006, August 6-11). Semantic term matching in axiomatic approaches to information retrieval. In S. Dumais, E. N. Efthimiadis, D. Hawking, & K. Jarvelin (Eds.), Proceedings of the SIGIR '06: 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 115-122). Association for Computing Machinery. https://doi.org/10.1145/1148170.1148193.
DOI
|
15 |
Pal, D., Mitra, M., & Datta, K. (2014). Improving query expansion using WordNet. Journal of the Association for Information Science and Technology, 65(12), 2469-2478. https://doi.org/10.1002/asi.23143.
DOI
|
16 |
Roy, D., Paul, D., Mitra M., & Garain, U. (2016). Using word embeddings for automatic query expansion. Paper presented at the Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, Pisa, Italy.
|
17 |
Larkey, L. S., Ballesteros, L., & Connell, M. E. (2002, August 11-15). Improving stemming for Arabic information retrieval: Light stemming and co-occurrence analysis. In K. Jarvelin, R. Baeza-Yates, & S. H. Myaeng (Eds.), Proceedings of the SIGIR '02: 25th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 275-282). Association for Computing Machinery. https://doi.org/10.1145/564376.564425.
DOI
|
18 |
Ganguly, D., Roy, D., Mitra, M., & Jones, G. J. F. (2015, August 9-13). Word embedding based generalized language model for information retrieval. In R. Gonzalez-Ibanez, & N. Hidalgo (Eds.), Proceedings of the SIGIR '15: 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 795-798). Association for Computing Machinery. https://doi.org/10.1145/2766462.2767780.
DOI
|
19 |
Iyyer, M., Manjunatha, V., & Daume, H., III. (2015, July 26-31). Deep unordered composition rivals syntactic methods for text classification. In C. Zong, & M. Strube (Eds.), Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (pp. 1681-1691). Association for Computational Linguistics. https://doi.org/10.3115/v1/P15-1162.
DOI
|
20 |
Kim, H. K., Kim, H., & Cho, S. (2017). Bag-of-concepts: Comprehending document representation through clustering words in distributed representation. Neurocomputing, 266, 336-352. https://doi.org/10.1016/j.neucom.2017.05.046.
DOI
|
21 |
Lavrenko, V., & Croft, W. B. (2017). Relevance-based language models. ACM SIGIR Forum, 51(2), 260-267. https://doi.org/10.1145/3130348.3130376.
DOI
|
22 |
Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to information retrieval. Cambridge University Press.
|
23 |
Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 44(1), 1. https://doi.org/10.1145/2071389.2071390.
DOI
|
24 |
Ben Guirat, S., Bounhas, I., & Slimani, Y. (2016). Combining indexing units for Arabic information retrieval. International Journal of Software Innovation, 4(4), 1-14. https://doi.org/10.4018/IJSI.2016100101.
DOI
|
25 |
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1-127. https://doi.org/10.1561/2200000006.
DOI
|
26 |
Carpineto, C., De Mori, R., Romano, G., & Bigi, B. (2001). An information-theoretic approach to automatic query expansion. ACM Transactions on Information Systems, 19(1), 1-27. https://doi.org/10.1145/366836.366860.
DOI
|
27 |
Crimp, R., & Trotman, A. (2018, December 11-12). Refining query expansion terms using query context. In B. Koopman, A. Trotman, & P. Thomas (Eds.), Proceedings of the ADCS '18: 23rd Australasian Document Computing Symposium (article no.: 12). Association for Computing Machinery. https://doi.org/10.1145/3291992.3292000.
DOI
|
28 |
Amati, G., & Van Rijsbergen, C. J. (2002). Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information Systems, 20(4), 357-389. https://doi.org/10.1145/582415.582416.
DOI
|
29 |
Dalton, J., Naseri, S., Dietz, L., & Allan, J. (2019, April 14-18). Local and global query expansion for hierarchical complex topics. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, & D. Hiemstra (Eds.), Proceedings of the 41st European Conference on IR Research, ECIR 2019 (pp. 290-303). Springer. https://doi.org/10.1007/978-3-030-15712-8_19.
DOI
|
30 |
Aklouche, B., Bounhas, I., & Slimani, Y. (2018, November 14-16). Query expansion based on NLP and word embeddings. Paper presented at the TREC 2018, Gaithersburg, MD, USA.
|
31 |
Belkin, N. J., Oddy, R. N., & Brooks, H. M. (1982). Ask for information retrieval: Part II. Results of a design study. Journal of Documentation, 38(3), 145-164. https://doi.org/10.1108/eb026726.
DOI
|
32 |
Berget, G., & Sandnes, F. E. (2015). Searching databases without query-building aids: Implications for dyslexic users. Information Research: An International Electronic Journal, 20(4), 689.
|
33 |
Clinchant, S., & Gaussier, E. (2013, September 29-October 2). A theoretical analysis of pseudo-relevance feedback models. In O. Kurland, D. Metzler, C. Lioma, B. Larsen, & P. Ingwersen (Eds.), Proceedings of the ICTIR '13: International Conference on the Theory of Information Retrieval (pp. 6-13). Association for Computing Machinery. https://doi.org/10.1145/2499178.2499179.
DOI
|
34 |
Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., & Gatford, M. (1995). Okapi at TREC-3. Paper presented at the 3rd Text REtrieval Conference (TREC-3), Gaithersburg, MD, USA.
|
35 |
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. https://arxiv.org/abs/1301.3781v3.
|
36 |
Darwish, K., & Ali, A. (2012, July 8-14). Arabic retrieval revisited: Morphological hole filling. In H. Li, C.-Y. Lin, M. Osborne, G. G. Lee, & J. C. Park (Eds.), Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (pp. 218-222). ACL.
|
37 |
Mukherjee, S., & Kumar, N. S. (2019, December 9-11). Duplicate question management and answer verification system. In M. Chang, R. Rajendran, Kinshuk, S. Murthy, & V. Kamat (Eds.), Proceedings of the 2019 IEEE Tenth International Conference on Technology for Education (pp. 266-267). IEEE. https://doi.org/10.1109/T4E.2019.00067.
DOI
|
38 |
Mustafa, M., AbdAlla, H., & Suleman, H. (2008, December 2-5). Current approaches in Arabic IR: A survey. In G. Buchanan, M. Masoodian, & S. J. Cunningham (Eds.), Proceedings of the 11th International Conference on Asian Digital Libraries, ICADL 2008 (pp. 406-407). Springer. https://doi.org/10.1007/978-3-540-89533-6_57.
DOI
|
39 |
Pennington, J., Socher, R., & Manning, C. (2014, October 25-29). GloVe: global vectors for word representation. In Y. Marton (Ed.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (pp. 1532-1543). Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1162.
DOI
|
40 |
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(76), 2493-2537.
|
41 |
Atwan, J., Mohd, M., Rashaideh, H., & Kanaan, G. (2016). Semantically enhanced pseudo relevance feedback for Arabic information retrieval. Journal of Information Science, 42(2), 246-260. https://doi.org/10.1177%2F0165551515594722.
DOI
|
42 |
Faqeeh, M., Abdulla, N., Al-Ayyoub, M., Jararweh, Y., & Quwaider, M. (2014, August 27-29). Cross-lingual short-text document classification for Facebook comments. In M. Younas, I. Awan, & A. Pescape (Eds.), Proceedings of the FiCloud 2014: 2nd International Conference on Future Internet of Things and Cloud (pp. 573-578). IEEE. https://doi.org/10.1109/FiCloud.2014.99.
DOI
|
43 |
Vaidyanathan, R., Das, S., & Srivastava, N. (2015). A study on retrieval models and query expansion using PRF. International Journal of Scientific & Engineering Research, 6(2), 13-18.
|
44 |
Zamani, H., & Croft, W. B. (2016, September 12-16). Embedding-based query language models. In B. Carterette, & H. Fang (Eds.), Proceedings of the ICTIR '16: 2016 ACM International Conference on the Theory of Information Retrieval (pp. 147-156). Association for Computing Machinery. https://doi.org/10.1145/2970398.2970405.
DOI
|
45 |
Miyanishi, T., Seki, K., & Uehara, K. (2013, October 27-November 1). Improving pseudo-relevance feedback via tweet selection. In Q. He, A. Iyengar, W. Nejdl, J. Pei, & R. Rastogi (Eds.), Proceedings of the CIKM '13: 22nd ACM international conference on Information & Knowledge Management (pp. 439-448). Association for Computing Machinery. https://doi.org/10.1145/2505515.2505701.
DOI
|
46 |
Mohsen, G., Al-Ayyoub, M., Hmeidi, I., & Al-Aiad, A. (2018, April 3-5). On the automatic construction of an Arabic thesaurus. In M. Quwaider (Ed.), Proceedings of the 2018 9th International Conference on Information and Communication Systems (pp. 243-247). IEEE. https://doi.org/10.1109/IACS.2018.8355431.
DOI
|
47 |
Abbache, A., Meziane, F., Belalem, G., & Belkredim, F. Z. (2016). Arabic query expansion using WordNet and association rules. International Journal of Intelligent Information Technologies, 12(3), 51-64. http://doi.org/10.4018/IJIIT.2016070104.
DOI
|
48 |
Abu El-Khair, I. (2007). Arabic information retrieval. Annual Review of Information Science and Technology, 41(1), 505-533. https://doi.org/10.1002/aris.2007.1440410118.
DOI
|
49 |
Takeuchi, S., Sugiura, K., Akahoshi, Y., & Zettsu, K. (2017). Spatio-temporal pseudo relevance feedback for scientific data retrieval. IEEJ Transactions on Electrical and Electronic Engineering, 12(1), 124-131. https://doi.org/10.1002/tee.22352.
DOI
|
50 |
Trotman, A., Puurula, A., & Burgess, B. (2014, November 27-28). Improvements to BM25 and language models examined. In J. Culpepper, L. Park, & G. Zuccon (Eds.), Proceedings of the ADCS '14: 2014 Australasian Document Computing Symposium (pp. 58-65). Association for Computing Machinery. https://doi.org/10.1145/2682862.2682863.
DOI
|
51 |
Montazeralghaem, A., Zamani, H., & Shakery, A. (2016, July 17-21). Axiomatic analysis for improving the log-logistic feedback model. In R. Perego, F. Sebastiani, J. Aslam, I. Ruthven, & J. Zobel (Eds.), Proceedings of the SIGIR '16: 39th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 765-768). Association for Computing Machinery. https://doi.org/10.1145/2911451.2914768.
DOI
|
52 |
Xue, B., Fu, C., & Shaobin, Z. (2014, June 27-July 2). A study on sentiment computing and classification of Sina Weibo with Word2vec. In P. Chen, & H. Jain (Eds.), Proceedings of the 2014 IEEE International Congress on Big Data (pp. 358-363). IEEE. https://doi.org/10.1109/BigData.Congress.2014.59.
DOI
|
53 |
Zuccon, G., Koopman, B., Bruza, P., & Azzopardi, L. (2015, December 8-9). Integrating and evaluating neural word embeddings in information retrieval. In L. A. F. Park, & S. Karimi (Eds.), Proceedings of the ADCS '15: 20th Australasian Document Computing Symposium (article no.: 12). Association for Computing Machinery. https://doi.org/10.1145/2838931.2838936.
DOI
|
54 |
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013b, December 5-10). Distributed representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Proceedings of the NIPS'13: 26th International Conference on Neural Information Processing Systems (pp. 3111-3119). Curran Associates.
|