• 제목/요약/키워드: Docking control

검색결과 79건 처리시간 0.025초

드론과 보행로봇의 영상기반 도킹 시스템 연구 (A Study on Image-based Docking System between Drone and Walking Robot)

  • 박희수;오세령;신지훈;김상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.854-857
    • /
    • 2016
  • 본 논문에서는 드론의 비행원리와 4족 로봇의 움직임에 관해 설명하고 마커 인식을 이용하여 두 로봇의 도킹 방법을 제시한다. 드론과 4족 로봇이 도킹 되었을 때 로봇의 무게 고려를 하여 설계를 하였고, 구조현장이나 재난극복 및 재난현장 같은 지상에서 이동할 수 없는 현장에 대해 비행과 지상을 이동하며 기동성을 높이고 임무를 수행할 수 있는 로봇을 제작했다.

Analgesic and anti-inflammatory effects of galangin: a potential pathway to inhibit transient receptor potential vanilloid 1 receptor activation

  • Kaiwen Lin;Datian Fu;Zhongtao Wang;Xueer Zhang;Canyang Zhu
    • The Korean Journal of Pain
    • /
    • 제37권2호
    • /
    • pp.151-163
    • /
    • 2024
  • Background: Galangin, commonly employed in traditional Chinese medicine for its diverse medicinal properties, exhibits potential in treating inflammatory pain. Nevertheless, its mechanism of action remains unclear. Methods: Mice were randomly divided into 4 groups for 7 days: a normal control group, a galangin-treated (25 and 50 mg/kg), and a positive control celecoxib (20 mg/kg). Analgesic and anti-inflammatory effects were evaluated using a hot plate test, acetic acid-induced writhing test, acetic acid-induced vascular permeability test, formalin-induced paw licking test, and carrageenan-induced paw swelling test. The interplay between galangin, transient receptor potential vanilloid 1 (TRPV1), NF-κB, COX-2, and TNF-α proteins was evaluated via molecular docking. COX-2, PGE2, IL-1β, IL-6, and TNF-α levels in serum were measured using ELISA after capsaicin administration (200 nmol/L). TRPV1 expression in the dorsal root ganglion was analyzed by Western blot. The quantities of substance P (SP) and calcitonin gene-related peptide (CGRP) were assessed using qPCR. Results: Galangin reduced hot plate-induced licking latency, acetic acid-induced contortions, carrageenan-triggered foot inflammation, and capillary permeability in mice. It exhibited favorable affinity towards TRPV1, NF-κB, COX-2, and TNF-α, resulting in decreased levels of COX-2, PGE2, IL-1β, IL-6, and TNF-α in serum following capsaicin stimulation. Galangin effectively suppressed the upregulation of TRPV1 protein and associated receptor neuropeptides CGRP and SP mRNA, while concurrently inhibiting the expression of NF-κB, TNF-α, COX-2, and PGE2 mRNA. Conclusions: Galangin exerts its anti-inflammatory pain effects by inhibiting TRPV1 activation and regulating COX-2, NF-κB/TNF-α expression, providing evidence for the use of galangin in the management of inflammatory pain.

Distributed control system architecture for deep submergence rescue vehicles

  • Sun, Yushan;Ran, Xiangrui;Zhang, Guocheng;Wu, Fanyu;Du, Chengrong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.274-284
    • /
    • 2019
  • The control architectures of Chuan Suo (CS) deep submergence rescue vehicle are introduced. The hardware and software architectures are also discussed. The hardware part adopts a distributed control system composed of surface and underwater nodes. A computer is used as a surface control machine. Underwater equipment is based on a multi-board-embedded industrial computer with PC104 BUS, which contains IO, A/D, D/A, eight-channel serial, and power boards. The hardware and software parts complete data transmission through optical fibers. The software part involves an IPC of embedded Vxworks real-time operating system, upon which the operation of I/O, A/D, and D/A boards and serial ports is based on; this setup improves the real-time manipulation. The information flow is controlled by the software part, and the thrust distribution is introduced. A submergence vehicle heeling control method based on ballast water tank regulation is introduced to meet the special heeling requirements of the submergence rescue vehicle during docking. Finally, the feasibility and reliability of the entire system are verified by a pool test.

굴절차량의 안내/추진 제어 설계용 Toolbox (Development of a Matlab Toolbox for Guidance & Traction Control Designs of an Articulated Transportation Vehicle)

  • 민경득;윤경한;김영철;변윤섭
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2074-2079
    • /
    • 2008
  • This paper presents a software toolbox with $Matlab^{(R)}$ developed for the various performance analysis of an automatic guidance system of the Bimodal Tram. The Bimodal Tram is a new kind of transportation vehicle which could be an all-wheel steered multiple-articulated vehicle. This vehicle has to be equipped with an automatic guidance, traction/braking, and docking system, In the stage of developing such a system, its validities and performances should be verified under various operation conditions. For the purpose of doing these things through simulation, this toolbox has been developed and demonstrated well by applying it to the KRRI model.

상대운동방정식 기반의 우주파편 충돌회피기동의 해석적 설계기법 (Analytical Design of the Space Debris Collision Avoidance Maneuver based on Relative Dynamics)

  • 조동현;김해동;이상철
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.1048-1052
    • /
    • 2013
  • Recently, many countries have attempted to protect their satellites from damage caused by space debris. To design these collision avoidance maneuvers, optimal algorithms based on numerical simulations are widely used due to their practicality. However, these algorithms often require a great expenditure of time in order to find solutions. Therefore, in this paper, a simple analytical strategy is suggested to find the initial prediction required to find these numerical solutions for collision avoidance maneuvers by using relative dynamics for the rendezvous and docking problems. For this analytical strategy, the simple dynamics on the CW (Clohessy-Wiltshire) frame is adopted as an attempt to introduce an analytical solution.

RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어 (Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi)

  • 김영식;이지홍;김진하;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.

마커인식 및 레이저 센서를 이용한 드론의 도킹 시스템 설계 (The Design of Docking Drone System using Marker Detection)

  • 백종환;박희수;오세령;신지훈;김상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.755-758
    • /
    • 2016
  • 본 논문에서는 마커 인식과 레이저 센서를 이용하여 드론과 모듈 로봇 간의 상호작용이 가능하며 도킹 가능한 드론을 설명한다. 모듈 로봇은 4족 로봇으로 4개의 다리를 이용하여 보행이 가능하며 스스로 장애물 회피 등의 지능적 행동이 가능하다. 연구에서는 1대의 카메라를 이용하여 마커 인식을 하고 레이저 센서 송수신을 통하여 모듈 로봇과의 상호작용이 가능함을 보인다. 실험은 마커 인식과 레이저 센서를 융합하였을 때의 도킹 성공률이 뛰어났다는 결과를 보이며 드론의 페이로드가 다른 상황에서도 안정적인 결과를 보여 영상이나 방범, 농업 분야에서 특수한 기술을 갖는 로봇을 드론과의 도킹을 통해 다른 모듈화 된 로봇들과 교체하여 실효성을 극대화 시킬 수 있을 것이다.

Socioeconomic impact of traditional Korean medicine, Pyeongwee-San (KMP6) as an anti-allergic inflammatory drug

  • Song, Young-Hoon;Nam, Sun-Young;Choi, Young-Jin;Kim, Jeong-Hwa;Kim, Young-Sick;Jeong, Hyun-Ja
    • 셀메드
    • /
    • 제2권3호
    • /
    • pp.29.1-29.9
    • /
    • 2012
  • The prevalence of allergic disease has been increasing over the past few decades in the majority of Western industrialized nations. There are some socioeconomic disparities regarding allergic disease status and management. Pyeongwee-San (KMP6) is Korean medicine for the treatment of gastrointestinal tract disease. It is known that KMP6 has an improving effect on the spleen and stomach functions in traditional Korean medical theory. Here, we hypothesized that KMP6 could be used to regulate the inflammatory reaction. We show the molecular mechanisms of Pyeongwee-San (KMP6) on inflammatory reactions. A molecular docking simulation showed that hesperidin, component of KMP6, regulate the enzymatic activity by interaction in the active site of caspase-1. KMP6 control the activity of caspase-1 in activated human mast cell line (HMC-1 cells). KMP6 reduced the expression of receptor interacting protein (RIP)-2 in HMC-1 cells. Thymic stromal lymphopoietin protein production and mRNA expression were inhibited by KMP6. In the activated HMC-1 cells, KMP6 suppressed the activation of mitogen-ativated protein kinase and nuclear factor-kappaB. In addition, KMP6 significantly inhibited the expression of inflammatory cytokines. Our findings indicate that KMP6 may attenuate allergic reactions via the regulation of caspase-1/RIP-2 signaling pathway. These studies will help advance the social welfare system.

도장전처리 작업을 위한 블라스팅 로봇 시스템 개발 및 성능평가 (Development and Performance Evaluation of Hull Blasting Robot for Surface Pre-Preparation for Painting Process)

  • 이준호;진태석
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.383-389
    • /
    • 2016
  • 본 논문은 선박의 외벽 청소를 위하여 영상기반의 용접부 인식기능을 탑재한 선체 블라시팅 로봇을 제시하였다. 본 로봇제작의 목표로서 선체 청소로봇의 설계 및 제작과정과 영상을 이용한 용접 비드 인식에 따른 성능 결과를 제시하였다. 그리고, 로봇제작에 따른 메카니즘과 로봇시스템의 제어기 제작 과정과 수직상승 메카니즘, 영상 시스템, 원격제어 기능을 갖는 선체 청소 특성에 대해서 기술하였다. 이러한 선체 청소로봇은 선박이 정박하는 동안에 청소를 수행하게 되므로 재도킹을 할 필요가 없는 장점이 있다. 따라서, 개발된 청소작업은 시간과 비용을 절감할 수 있고, 선체의 수직벽면의 주행이 가능하므로 부유물질 등을 수집할 수 있는 필러장치를 장착하고 있다. 개발된 로봇시스템의 동작 및 통신 성능테스트 결과를 통하여 성능평가 결과를 제시하였다.

가정용 지능형 경비 로봇 시스템 개발 (Development of an Intelligent Security Robot System for Home Surveillance)

  • 박정호;신동관;우춘규;김형철;권용관;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.