• Title/Summary/Keyword: Docking Mechanism

Search Result 70, Processing Time 0.024 seconds

Mechanism Studies of Substituted Triazol-1-yl-pyrimidine Derivatives Inhibition on Mycobacterium tuberculosis Acetohydroxyacid Synthase

  • Chien, Pham Ngoc;Jung, In-Pil;Reddy, Katta Venugopal;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4074-4078
    • /
    • 2012
  • The first step in the common pathway for the biosynthesis of branched chain amino acids is catalyzed by acetohydroxyacid synthase (AHAS). The AHAS is found in plants, fungi and bacteria. With an aim to identify new anti-tuberculosis drugs that inhibit branched chain amino acid biosynthesis, we screened a chemical library against Mycobacterium tuberculosis AHAS. The screening identified four compounds, AVS 2087, AVS 2093, AVS 2236, and AVS 2387 with $IC_{50}$ values of 0.28, 0.21, 3.88, and $0.25{\mu}M$, respectively. Moreover, these four compounds also showed strong inhibition against reconstituted AHAS with $IC_{50}$ values of 0.37, 0.26, 1.0, and $1.18{\mu}M$, respectively. The basic scaffold of the AVS group consists of 1-pyrimidin-2-yl-1H-[1,2,4]-triazole-3-sulfonamide. The most active compound, AVS 2387, showed the lowest total interaction energy -8.75 Kcal/mol and illustrates its binding mode by hydrogen bonding with $H_{\varepsilon}$ of Gln517 with the distance of $2.24{\AA}$.

In silico discovery and evaluation of phytochemicals binding mechanism against human catechol-O-methyltransferase as a putative bioenhancer of L-DOPA therapy in Parkinson disease

  • Rath, Surya Narayan;Jena, Lingaraja;Bhuyan, Rajabrata;Mahanandia, Nimai Charan;Patri, Manorama
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.

Molecular Mechanism Underlying Hesperetin-induced Apoptosis by in silico Analysis and in Prostate Cancer PC-3 Cells

  • Sambantham, Shanmugam;Radha, Mahendran;Paramasivam, Arumugam;Anandan, Balakrishnan;Malathi, Ragunathan;Chandra, Samuel Rajkumar;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4347-4352
    • /
    • 2013
  • Aim: To investigate the molecular mechanisms underlying triggering of apoptosis by hesperetin using in silico and in vitro methods. Methods: The mechanism of binding of hesperetin with NF-${\kappa}B$ and other apoptotic proteins like BAX, BAD, $BCL_2$ and $BCL_{XL}$ was analysed in silico using Schrodinger suite 2009. In vitro studies were also carried out to evaluate the potency of hesperetin in inducing apoptosis using the human prostate cancer PC-3 cell line. Results: Hesperetin was found to exhibit high-affinity binding resulting from greater intermolecular forces between the ligand and its receptor NF-${\kappa}B$ (-7.48 Glide score). In vitro analysis using MTT assay confirmed that hesperetin reduced cell proliferation ($IC_{50}$ values of 90 and $40{\mu}M$ at 24 and 48h respectively) in PC-3 cells. Hesperetin also downregulated expression of the anti-apoptotic gene $BCL_{XL}$ at both mRNA and protein levels and increased the expression of pro-apoptotic genes like BAD at mRNA level and BAX at mRNA as well as protein levels. Conclusion: The results suggest that hesperetin can induce apoptosis by inhibiting NF-${\kappa}B$.

Crystal Structure of LysB4, an Endolysin from Bacillus cereus-Targeting Bacteriophage B4

  • Hong, Seokho;Son, Bokyung;Ryu, Sangryeol;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.79-86
    • /
    • 2019
  • Endolysins are bacteriophage-derived enzymes that hydrolyze the peptidoglycan of host bacteria. Endolysins are considered to be promising tools for the control of pathogenic bacteria. LysB4 is an endolysin produced by Bacillus cereus-infecting bacteriophage B4, and consists of an N-terminal enzymatic active domain (EAD) and a C-terminal cell wall binding domain (CBD). LysB4 was discovered for the first time as an L-alanoyl-D-glutamate endopeptidase with the ability to breakdown the peptidoglycan among B. cereus-infecting phages. To understand the activity of LysB4 at the molecular level, this study determined the X-ray crystal structure of the LysB4 EAD, using the full-length LysB4 endolysin. The LysB4 EAD has an active site that is typical of LAS-type enzymes, where $Zn^{2+}$ is tetrahedrally coordinated by three amino acid residues and one water molecule. Mutational studies identified essential residues that are involved in lytic activity. Based on the structural and biochemical information about LysB4, we suggest a ligand-docking model and a putative endopeptidase mechanism for the LysB4 EAD. These suggestions add insight into the molecular mechanism of the endolysin LysB4 in B. cereus-infecting phages.

Molecular characterization and docking dynamics simulation prediction of cytosolic OASTL switch cysteine and mimosine expression in Leucaena leucocephala

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Amzad Hossain, Md.;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.36-36
    • /
    • 2017
  • Out of twenty common protein amino acids, there are many kinds of non protein amino acids (NPAAs) that exist as secondary metabolites and exert ecological functions in plants. Mimosine (Mim), one of those NPAAs derived from L. leucocephala acts as an iron chelator and reversely block mammalian cell cycle at G1/S phases. Cysteine (Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur-containing secondary products. Cys biosynthesis includes consecutive two steps using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast, and mitochondria. In the first step, the acetylation of the ${\beta}$-hydroxyl of L-serine by acetyl-CoA in the existence of SAT and finally, OASTL triggers ${\alpha}$, ${\beta}$-elimination of acetate from OAS and bind $H_2S$ to catalyze the synthesis of Cys. Mimosine synthase, one of the isozymes of the OASTLs, is able to synthesize Mim with 3-hydroxy-4-pyridone (3H4P) instead of $H_2S$ for Cys in the last step. Thus, the aim of this study was to clone and characterize the cytosolic (Cy) OASTL gene from L. leucocephala, express the recombinant OASTL in Escherichia coli, purify it, do enzyme kinetic analysis, perform docking dynamics simulation analysis between the receptor and the ligands and compare its performance between Cys and Mim synthesis. Cy-OASTL was obtained through both directional degenerate primers corresponding to conserved amino acid region among plant Cys synthase family and the purified protein was 34.3KDa. After cleaving the GST-tag, Cy-OASTL was observed to form mimosine with 3H4P and OAS. The optimum Cys and Mim reaction pH and temperature were 7.5 and $40^{\circ}C$, and 8.0 and $35^{\circ}C$ respectively. Michaelis constant (Km) values of OAS from Cys were higher than the OAS from Mim. Inter fragment interaction energy (IFIE) of substrate OAS-Cy-OASTL complex model showed that Lys, Thr81, Thr77 and Gln150 demonstrated higher attraction force for Cys but 3H4P-mimosine synthase-OAS intermediate complex showed that Gly230, Tyr227, Ala231, Gly228 and Gly232 might provide higher attraction energy for the Mim. It may be concluded that Cy-OASTL demonstrates a dual role in biosynthesis both Cys and Mim and extending the knowledge on the biochemical regulatory mechanism of mimosine and cysteine.

  • PDF

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

p-Coumaric Acid Potently Down-regulates Zebrafish Embryo Pigmentation: Comparison of in vivo Assay and Computational Molecular Modeling with Phenylthiourea

  • Kim, Dong-Chan;Kim, Seonlin;Hwang, Kyu-Seok;Kim, Cheol-Hee
    • Biomedical Science Letters
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • p-Coumaric acid is an organic compound that is a hydroxyl derivative of cinnamic acid. Due to its multiple biological activities p-coumaric acid has been widely studied in biochemical and cellular systems and is also considered as a useful therapeutic candidate for various neuronal diseases. However, the efficacy of p-coumaric acid on zebrafish developmental regulation has not been fully explored. In this study, therefore, we first investigated the action mechanism of the p-coumaric acid on the zebrafish development in a whole-organism model. p-Coumaric acid treated group significantly inhibited the pigmentation of the developing zebrafish embryos compared with control embryos without any severe side effects. In addition, p-coumaric acid down-regulated more effectively in a lower concentration than the well-known zebrafish's melanogenic inhibitor, phenylthiourea. We also compared the molecular docking property of p-coumaric acid with phenylthiourea on the tyrosinase's kojic acid binding site, which is the key enzyme of zebrafish embryo pigmentation. Interestingly, p-coumaric acid interacted with higher numbers of the amino acid residues and exhibited a tight binding affinity to the enzyme than phenylthiourea. Taken all together, these results strongly suggest that p-coumaric acid inhibits the activity of tyrosinase, consequently down-regulating zebrafish embryo pigmentation, and might play an important role in the reduction of dermal pigmentation. Thus, p-coumaric acid can be an effective and non-toxic ingredient for anti-melanogenesis functional materials.

Two Flavonoid-Based Compounds from Murraya paniculata as Novel Human Carbonic Anhydrase Isozyme II Inhibitors Detected by a Resazurin Yeast-Based Assay

  • Sangkaew, Anyaporn;Samritsakulchai, Nawara;Sanachai, Kamonpan;Rungrotmongkol, Thanyada;Chavasiri, Warinthorn;Yompakdee, Chulee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.552-560
    • /
    • 2020
  • Human carbonic anhydrase (CA) isozyme II has been used as protein target for disorder treatment including glaucoma. Current clinically used sulfonamide-based CA inhibitors can induce side effects, and so alternatives are required. This study aimed to investigate a natural CA inhibitor from Murraya paniculata. The previously developed yeast-based assay was used to screen 14 compounds isolated from M. paniculata and identified by NMR analysis for anti-human CA isozyme II (hCAII) activity. Cytotoxicity of the compounds was also tested using the same yeast-based assay but in a different cultivation condition. Two flavonoid candidate compounds, 5, 6, 7, 8, 3', 4', 5'-heptamethoxyflavone (4) and 3, 5, 7, 8, 3', 4', 5'-heptamethoxyflavone (9), showed potent inhibitory activity against hCAII with a minimal effective concentration of 10.8 and 21.5 μM, respectively, while they both exhibited no cytotoxic effect, even at the highest concentration tested (170 μM). The results from an in vitro esterase assay of the two candidates confirmed their hCAII inhibitory activity with IC50 values of 24.0 and 34.3 μM, respectively. To investigate the potential inhibition mechanism of compound 4, in silico molecular docking was performed using the FlexX and SwissDock software. This revealed that compound 4 coordinated with the Zn2+ ion in the hCAII active site through its methoxy oxygen at a distance of 1.60 Å (FlexX) or 2.29 Å (SwissDock). The interaction energy of compound 4 with hCAII was -13.36 kcal/mol. Thus, compound 4 is a potent novel flavonoid-based hCAII inhibitor and may be useful for further anti-CAII design and development.

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong;Ryu, Min Sook;Kim, Hong Seok;Suganuma, Masami;Song, Kye Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.266-279
    • /
    • 2016
  • The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

Eupafolin Suppresses P/Q-Type Ca2+ Channels to Inhibit Ca2+/Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals

  • Chang, Anna;Hung, Chi-Feng;Hsieh, Pei-Wen;Ko, Horng-Huey;Wang, Su-Jane
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.630-636
    • /
    • 2021
  • Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.