DOI QR코드

DOI QR Code

Two Flavonoid-Based Compounds from Murraya paniculata as Novel Human Carbonic Anhydrase Isozyme II Inhibitors Detected by a Resazurin Yeast-Based Assay

  • Sangkaew, Anyaporn (Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Samritsakulchai, Nawara (Department of Chemistry, Faculty of Science, Chulalongkorn University) ;
  • Sanachai, Kamonpan (Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Rungrotmongkol, Thanyada (Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University) ;
  • Chavasiri, Warinthorn (Department of Chemistry, Faculty of Science, Chulalongkorn University) ;
  • Yompakdee, Chulee (Department of Microbiology, Faculty of Science, Chulalongkorn University)
  • 투고 : 2019.10.17
  • 심사 : 2019.12.27
  • 발행 : 2020.04.28

초록

Human carbonic anhydrase (CA) isozyme II has been used as protein target for disorder treatment including glaucoma. Current clinically used sulfonamide-based CA inhibitors can induce side effects, and so alternatives are required. This study aimed to investigate a natural CA inhibitor from Murraya paniculata. The previously developed yeast-based assay was used to screen 14 compounds isolated from M. paniculata and identified by NMR analysis for anti-human CA isozyme II (hCAII) activity. Cytotoxicity of the compounds was also tested using the same yeast-based assay but in a different cultivation condition. Two flavonoid candidate compounds, 5, 6, 7, 8, 3', 4', 5'-heptamethoxyflavone (4) and 3, 5, 7, 8, 3', 4', 5'-heptamethoxyflavone (9), showed potent inhibitory activity against hCAII with a minimal effective concentration of 10.8 and 21.5 μM, respectively, while they both exhibited no cytotoxic effect, even at the highest concentration tested (170 μM). The results from an in vitro esterase assay of the two candidates confirmed their hCAII inhibitory activity with IC50 values of 24.0 and 34.3 μM, respectively. To investigate the potential inhibition mechanism of compound 4, in silico molecular docking was performed using the FlexX and SwissDock software. This revealed that compound 4 coordinated with the Zn2+ ion in the hCAII active site through its methoxy oxygen at a distance of 1.60 Å (FlexX) or 2.29 Å (SwissDock). The interaction energy of compound 4 with hCAII was -13.36 kcal/mol. Thus, compound 4 is a potent novel flavonoid-based hCAII inhibitor and may be useful for further anti-CAII design and development.

키워드

참고문헌

  1. Song P, Wang J, Bucan K, Theodoratou E, Rudan I, Chan KY. 2017. National and subnational prevalence and burden of glaucoma in China: a systematic analysis. J. Glob. Health 7: 020705. https://doi.org/10.7189/jogh.07.020705
  2. Liang YB, Zhang Y, Musch DC, Congdon N. 2017. Proposing new indicators for glaucoma healthcare service. Eye Vis. (Lond) 4: 6. https://doi.org/10.1186/s40662-017-0071-0
  3. Varma R, Lee PP, Goldberg I, Kotak S. 2011. An assessment of the health and economic burdens of glaucoma. Am. J. Ophthalmol. 152: 515-522. https://doi.org/10.1016/j.ajo.2011.06.004
  4. Goel M, Picciani RG, Lee RK, Bhattacharya SK. 2010. Aqueous humor dynamics: a review. Open Ophthalmol. J. 4: 52-59. https://doi.org/10.2174/1874364101004010052
  5. Sly WS, Hu PY. 1995. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu. Rev. Biochem. 64: 375-401. https://doi.org/10.1146/annurev.bi.64.070195.002111
  6. Supuran CT. 2008. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7: 168-181. https://doi.org/10.1038/nrd2467
  7. Supuran CT, Scozzafava A. 2000. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin. Ther. Pat. 10: 575-600. https://doi.org/10.1517/13543776.10.5.575
  8. Silver LH. 1998. Clinical efficacy and safety of brinzolamide (Azopt), a new topical carbonic anhydrase inhibitor for primary openangle glaucoma and ocular hypertension. Brinzolamide Primary Therapy Study Group. Am. J. Ophthalmol. 126: 400-408. https://doi.org/10.1016/S0002-9394(98)00095-6
  9. Scozzafava A, Supuran CT. 2014. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell Biochem. 75: 349-359. https://doi.org/10.1007/978-94-007-7359-2_17
  10. Schmidl D, Schmetterer L, Garhofer G, Popa-Cherecheanu A. 2015. Pharmacotherapy of glaucoma. J. Ocul. Pharmacol. Ther. 31: 63-77. https://doi.org/10.1089/jop.2014.0067
  11. Kelly TE, Hackett PH. 2010. Acetazolamide and sulfonamide allergy: a not so simple story. High Alt. Med. Biol. 11: 319-323. https://doi.org/10.1089/ham.2010.1051
  12. Guedes GB, Karan A, Mayer HR, Shields MB. 2013. Evaluation of adverse events in self-reported sulfa-allergic patients using topical carbonic anhydrase inhibitors. J. Ocul. Pharmacol. Ther. 29: 456-461. https://doi.org/10.1089/jop.2012.0123
  13. Macy E, Poon KYT. 2009. Self-reported antibiotic allergy incidence and prevalence: age and sex effects. Am. J. Med. 122: 778 e771-777.
  14. Lomelino C, Supuran C, McKenna R. 2016. Non-classical inhibition of carbonic anhydrase. Int. J. Mol. Sci. 17: 1150. https://doi.org/10.3390/ijms17071150
  15. Bilsland E, Sparkes A, Williams K, Moss HJ, de Clare M, Pir P, et al. 2013. Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol. 3: 120158. https://doi.org/10.1098/rsob.120158
  16. Barberis A, Gunde T, Berset C, Audetat S, Luthi U. 2005. Yeast as a screening tool. Drug Discov. Today Technol. 2: 187-192. https://doi.org/10.1016/j.ddtec.2005.05.022
  17. Ann Bjornsti M. 2002. Cancer therapeutics in yeast. Cancer Cell 2: 267-273. https://doi.org/10.1016/S1535-6108(02)00160-5
  18. Sangkaew A, Krungkrai J, Yompakdee C. 2018. Development of a high throughput yeast-based screening assay for human carbonic anhydrase isozyme II inhibitors. AMB Express. 8: 124. https://doi.org/10.1186/s13568-018-0653-9
  19. Li R. 2016. Natural Product-Based Drug Discovery. Med. Res. Rev. 36: 3. https://doi.org/10.1002/med.21380
  20. J. Mabberley D. 2016. The typification of Murraya, M. exotica, and M. paniculata (Rutaceae): its significance for the world citrus industry. Taxon. 65: 366-371. https://doi.org/10.12705/652.15
  21. Ito C, Furukawa H. 1987. Constituents of Murraya exotica L. structure elucidation of new coumarins. Chem. Pharm. Bull (Tokyo). 35: 4277-4285. https://doi.org/10.1248/cpb.35.4277
  22. Barik BR, Dey AK, Das PC, Chatterjee A, Shoolery JN. 1983. Coumarins of Murraya exotica-absolute configuration of auraptenol. Phytochemistry 22: 792-794. https://doi.org/10.1016/S0031-9422(00)86993-9
  23. Shan J, Wang XZ, Ma YD, Yang RJ, Li XW, Jin YR. 2010. Studies on flavonoids from leaves of Murraya panaculata L. (I). Chin Pharm. J. 45: 1910-1912.
  24. Zhang Y, Li J, Zhou SX, Tu PF. 2010. Polymethoxylated flavonoids from the leaves of Murraya paniculata. Chin. Pharm. J. 45: 1139-1141.
  25. Chen C-H, Chan H-C, Chu Y-T, Ho H-Y, Chen P-Y, Lee T-H, et al. 2009. Antioxidant Activity of Some Plant Extracts Towards Xanthine Oxidase, Lipoxygenase and Tyrosinase. Molecules 14: 2947-2958. https://doi.org/10.3390/molecules14082947
  26. Gautam M, Gangwar M, Singh A, Rao C, Goel R. 2012. In-vitro Antioxidant properties of Murraya paniculata (L.) leaves extract. Inventi Rapid: Ethnopharmacology 2012: 1-3.
  27. Saeed S, Shah S, Mehmood R, Malik A. 2011. Paniculacin, a new coumarin derivative from Murraya paniculata. J. Asian Nat. Prod Res. 13: 724-727. https://doi.org/10.1080/10286020.2011.586343
  28. Gautam M, Singh A, Rao C, Goel R. 2012. Toxicological evaluation of Murraya paniculata (L.) leaves extract on rodents. AJPT. 7: 62-67.
  29. Gautam M, Gangwar M, Nath G, Rao C, K Goel R. 2012. In-vitro antibacterial activity on human pathogens and total phenolic, flavonoid contents of Murraya paniculata Linn. leaves. Asian Pac. J. Trop Biomed. 2: S1660-S1663. https://doi.org/10.1016/S2221-1691(12)60472-9
  30. Menezes IR, Santana TI, Varela VJ, Saraiva RA, Matias EF, Boligon AA, et al. 2015. Chemical composition and evaluation of acute toxicological, antimicrobial and modulatory resistance of the extract of Murraya paniculata. Pharm. Biol. 53: 185-191. https://doi.org/10.3109/13880209.2014.913068
  31. Rodanant P, Khetkam P, Suksamrarn A, Kuvatanasuchati J. 2015. Coumarins and flavonoid from Murraya paniculata (L.) Jack: antibacterial and anti-inflammation activity. Pak J. Pharm. Sci. 28: 1947-1951.
  32. Lv H-N, Wang S, Zeng K-W, Li J, Guo X-Y, Ferreira D, et al. 2015. Anti-inflammatory coumarin and benzocoumarin derivatives from Murraya alata. J. Nat. Prod. 78: 279-285. https://doi.org/10.1021/np500861u
  33. Davis RA, Vullo D, Maresca A, Supuran CT, Poulsen SA. 2013. Natural product coumarins that inhibit human carbonic anhydrases. Bioorgan. Med. Chem. 21: 1539-1543. https://doi.org/10.1016/j.bmc.2012.07.021
  34. Karatas MO, Alici B, Cakir U, Cetinkaya E, Demir D, Ergun A, et al. 2014. New coumarin derivatives as carbonic anhydrase inhibitors. Artif. Cells Nanomed. Biotechnol. 42: 192-198. https://doi.org/10.3109/21691401.2013.794352
  35. Pustenko A, Stepanovs D, Zalubovskis R, Vullo D, Kazaks A, Leitans J, et al. 2017. 3H-1,2-benzoxathiepine 2,2-dioxides: a new class of isoform-selective carbonic anhydrase inhibitors. J. Enzyme. Inhib. Med. Chem. 32: 767-775. https://doi.org/10.1080/14756366.2017.1316720
  36. Karatas MO, Uslu H, Sari S, Alagoz MA, Karakurt A, Alici B, et al. 2016. Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies. J. Enzyme. Inhib. Med. Chem. 31: 760-772. https://doi.org/10.3109/14756366.2015.1063624
  37. Huyut Z, Beydemir S, Gulcin I. 2017. Inhibition properties of some flavonoids on carbonic anhydrase I and II isoenzymes purified from human erythrocytes. J. Biochem. Mol. Toxicol. 31: e21930. https://doi.org/10.1002/jbt.21930
  38. Ekinci D, Karagoz L, Ekinci D, Senturk M, Supuran CT. 2013. Carbonic anhydrase inhibitors: in vitro inhibition of alpha isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids. J. Enzyme Inhib. Med. Chem.. 28: 283-288. https://doi.org/10.3109/14756366.2011.643303
  39. Rarey M, Kramer B, Lengauer T, Klebe G. 1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261: 470-489. https://doi.org/10.1006/jmbi.1996.0477
  40. Grosdidier A, Zoete V, Michielin O. 2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39: W270-277. https://doi.org/10.1093/nar/gkr366
  41. Petersson GA, Malick DK, Wilson WG, Ochterski JW, Montgomery JA, Frisch MJ. 1998. Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. J. Chem. Phys. 109: 10570-10579. https://doi.org/10.1063/1.477794
  42. Grosdidier A, Zoete V, Michielin O. 2007. EADock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins 67: 1010-1025. https://doi.org/10.1002/prot.21367
  43. Barken FM, Gasteiger EL. 1980. Excitability of a penicillin-induced cortical epileptic focus. Exp. Neurol. 70: 539-547. https://doi.org/10.1016/0014-4886(80)90180-6
  44. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. 2004. UCSF chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605-1612. https://doi.org/10.1002/jcc.20084
  45. Zhong HA. 2013. ADME and toxicity in early drug discovery. Curr. Top Med. Chem. 13: 1255-1256. https://doi.org/10.2174/15680266113139990031
  46. Aguilera J, Van Dijken JP, De Winde JH, Pronk JT. 2005. Carbonic anhydrase (Nce103p): an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochem. J. 391: 311-316. https://doi.org/10.1042/BJ20050556
  47. Polat MF, Nalbantolu B. 2002. In vitro esterase activity of carbonic anhydrase on total esterase activity level in serum. Turk J. Med. Sci. 32: 299-302.
  48. Balaydin HT, Durdagi S, Ekinci D, Senturk M, Goksu S, Menzek A. 2012. Inhibition of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol, methoxy and bromophenol compounds. J. Enzyme Inhib. Med. Chem. 27: 467-475. https://doi.org/10.3109/14756366.2011.596836
  49. Ghorab MM, Alsaid MS, Ceruso M, Nissan YM, Supuran CT. 2014. Carbonic anhydrase inhibitors: synthesis, molecular docking, cytotoxic and inhibition of the human carbonic anhydrase isoforms I, II, IX, XII with novel benzenesulfonamides incorporating pyrrole, pyrrolopyrimidine and fused pyrrolopyrimidine moieties. Bioorg. Med. Chem. 22: 3684-3695. https://doi.org/10.1016/j.bmc.2014.05.009
  50. Abuelizz H, El Dib R, Marzouk M, Anouar EH, A. Maklad Y, N. Attia H, et al. 2017. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules. 22: 1094. https://doi.org/10.3390/molecules22071094
  51. Sethi KK, Verma SM, Tanc M, Purper G, Calafato G, Carta F, et al. 2014. Carbonic anhydrase inhibitors: synthesis and inhibition of the human carbonic anhydrase isoforms I, II, IX and XII with benzene sulfonamides incorporating 4- and 3-nitrophthalimide moieties. Bioorg. Med. Chem. 22: 1586-1595. https://doi.org/10.1016/j.bmc.2014.01.031
  52. Durdagi S, Korkmaz N, Isik S, Vullo D, Astley D, Ekinci D, et al. 2016. Kinetic and docking studies of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with some hydroxylic compounds. J. Enzyme Inhib. Med. Chem. 31: 1214-1220. https://doi.org/10.3109/14756366.2015.1114930
  53. Ekhteiari Salmas R, Mestanoglu M, Durdagi S, Senturk M, Kaya AA, Kaya EC. 2016. Kinetic and in silico studies of hydroxy-based inhibitors of carbonic anhydrase isoforms I and II. J. Enzyme Inhib. Med. Chem. 31: 31-37. https://doi.org/10.3109/14756366.2014.1003216
  54. Kinoshita T, Shimada M. 2002. Isolation and structure elucidation of a new prenylcoumarin from Murraya paniculata var. omphalocarpa (Rutaceae). Chem. Pharm. Bull (Tokyo). 50: 118-120. https://doi.org/10.1248/cpb.50.118
  55. Xin-Jia Y, Wei L, Ying Z, Ning C, Ying X, Jian W, et al. 2016. A New biphenyl neolignan from Leaves of Patrinia villosa (Thunb.) Juss. Pharmacogn. Mag. 12: 1-3.
  56. Kinoshita T, Jin-Bin W, Feng-Chi H. 1996. The isolation of a prenylcoumarin of chemotaxonomic significance from Murraya paniculata var. omphalocarpa. Phytochemistry 43: 125-128. https://doi.org/10.1016/0031-9422(96)00255-5
  57. Nour AMM, Khalid SA, Kaiser M, Brun R, Abdalla WlE, Schmidt TJ. 2010. The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J. Ethnopharmacol. 129: 127-130. https://doi.org/10.1016/j.jep.2010.02.015
  58. Tantishaiyakul V, Pummangura S, Chaichantipyuth C, Ma WW, McLaughlin JL. 1986. Phebalosin from the bark of Micromelum minutum. J. Nat. Prod. 49: 180-181. https://doi.org/10.1021/np50043a038
  59. Ferracin RJ, das G.F. da Silva MF, Fernandes JB, Vieira PC. 1998. Flavonoids from the fruits of Murraya paniculata. Phytochemistry 47: 393-396. https://doi.org/10.1016/S0031-9422(97)00598-0
  60. Longhuo Wu JL, Xiaohua Guo, Hao Huang, Haibo Hu, Rui Zhang. 2013. Chondroprotective evaluation of two natural coumarins: murrangatin and murracarpin. J. Intercult. Ethnopharmacol. 2: 91-98. https://doi.org/10.5455/jice.20130313082010
  61. Kinoshita T, Firman K. 1997. Myricetin 5,7,3',4',5'-pentamethyl ether and other methylated flavonoids from Murraya paniculata. Phytochemistry 45: 179-181. https://doi.org/10.1016/S0031-9422(96)00853-9
  62. Karioti A, Ceruso M, Carta F, Bilia AR, Supuran CT. 2015. New natural product carbonic anhydrase inhibitors incorporating phenol moieties. Bioorg. Med. Chem. 23: 7219-7225. https://doi.org/10.1016/j.bmc.2015.10.018
  63. Wu T-S, Liou M-J, Kuoh C-S. 1989. Coumarins of the flowers of Murraya paniculata. Phytochemistry 28: 293-294. https://doi.org/10.1016/0031-9422(89)85066-6