DOI QR코드

DOI QR Code

Eupafolin Suppresses P/Q-Type Ca2+ Channels to Inhibit Ca2+/Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals

  • Chang, Anna (School of Medicine, Fu Jen Catholic University) ;
  • Hung, Chi-Feng (School of Medicine, Fu Jen Catholic University) ;
  • Hsieh, Pei-Wen (Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology) ;
  • Ko, Horng-Huey (Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University) ;
  • Wang, Su-Jane (School of Medicine, Fu Jen Catholic University)
  • Received : 2021.03.09
  • Accepted : 2021.05.28
  • Published : 2021.11.01

Abstract

Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.

Keywords

Acknowledgement

This work was supported by the Shin Kong Wu Ho-Su Memorial Hospital (grant no.108-SKH-FJU-01).

References

  1. Abbasi, A. M., Khan, M. A., Ahmad, M., Zafar, M., Jahan, S. and Sultana, S. (2010) Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J. Ethnopharmacol. 128, 322-335. https://doi.org/10.1016/j.jep.2010.01.052
  2. Akerman, K. E., Scott, I. G., Heikkila, J. E. and Heinonen, E. (1987) Ionic dependence of membrane potential and glutamate receptorlinked responses in synaptoneurosomes as measured with a cyanine dye, DiS-C2-(5). J. Neurochem. 48, 552-559. https://doi.org/10.1111/j.1471-4159.1987.tb04128.x
  3. Baldwin, M. L., Rostas, J. A. and Sim, A. T. (2003) Two modes of exocytosis from synaptosomes are differentially regulated by protein phosphatase types 2A and 2B. J. Neurochem. 85, 1190-1199. https://doi.org/10.1046/j.1471-4159.2003.01779.x
  4. Bano, D. and Ankarcrona, M. (2018) Beyond the critical point: an overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci. Lett. 663, 79-85. https://doi.org/10.1016/j.neulet.2017.08.048
  5. Barrie, A. P., Nicholls, D. G., Sanchez-Prieto, J. and Sihra, T. S. (1991) An ion channel locus for the protein kinase C potentiation of transmitter glutamate release from guinea pig cerebrocortical synaptosomes. J. Neurochem. 57, 1398-1404. https://doi.org/10.1111/j.1471-4159.1991.tb08306.x
  6. Berridge, M. J. (1998) Neuronal calcium signaling. Neuron 21, 13-26. https://doi.org/10.1016/S0896-6273(00)80510-3
  7. Chang, Y., Lu, C. W., Lin, T. Y., Huang, S. K. and Wang, S. J. (2016) Baicalein, a constituent of Scutellaria baicalensis, reduces glutamate release and protects neuronal cell against kainic acid-induced excitotoxicity in rats. Am. J. Chinese Med. 44, 943-962. https://doi.org/10.1142/s0192415x1650052x
  8. Chen, X., Yao, Z., Peng, X., Wu, L., Wu , H., Ou, Y. and Lai, J. (2020) Eupafolin alleviates cerebral ischemia/reperfusion injury in rats via blocking the TLR4/NF κB signaling pathway. Mol. Med. Rep. 22, 5135-5144. https://doi.org/10.3892/mmr.2020.11637
  9. Chi, P., Greengard, P. and Ryan, T. A. (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69-78. https://doi.org/10.1016/S0896-6273(03)00151-X
  10. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634. https://doi.org/10.1016/0896-6273(88)90162-6
  11. Dunkley, P. R., Jarvie, P. E., Heath, J. W., Kidd, G. J. and Rostas, J. A. (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res. 372, 115-129. https://doi.org/10.1016/0006-8993(86)91464-2
  12. Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450. https://doi.org/10.1016/S0021-9258(19)83641-4
  13. Hinds, H. L., Goussakov, I., Nakazawa, K., Tonegawa, S. and Bolshakov, V. Y. (2003) Essential function of alpha-calcium/calmodulin-dependent protein kinase II in neurotransmitter release at a glutamatergic central synapse. Proc. Natl. Acad. Sci. U.S.A. 100, 4275-4280. https://doi.org/10.1073/pnas.0530202100
  14. Hudmon, A. and Schulman, H. (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473-510. https://doi.org/10.1146/annurev.biochem.71.110601.135410
  15. Ko, H. H., Chiang, Y. C., Tsai, M. H., Liang, C. J., Hsu, L. F., Li, S. Y., Wang, M. C., Yen, F.L., and Lee, C. W. (2014) Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: role of MAPK and Akt pathways. J. Ethnopharmacol. 151, 386-393. https://doi.org/10.1016/j.jep.2013.10.054
  16. Lazarevic, V., Yang, Y., Ivanova, D., Fejtova, A., and Svenningsson, P. (2018) Riluzole attenuates the efficacy of glutamatergic transmission by interfering with the size of the readily releasable neurotransmitter pool. Neuropharmacology 143, 38-48. https://doi.org/10.1016/j.neuropharm.2018.09.021
  17. Lee, C. W., Lin, Z. C., Hsu, L. F, Fang, J. Y., Chiang, Y. C., Tsai, M. H., Lee, M. H., Li, S. Y., Hu, S. C., Lee, I. T. and Yen, F. L. (2016) Eupafolin ameliorates COX-2 expression and PGE2 production in particulate pollutants-exposed human keratinocytes through ROS/MAPKs pathways. J. Ethnopharmacol. 189, 300-309. https://doi.org/10.1016/j.jep.2016.05.002
  18. Leon, D., Sanchez-Nogueiro, J., Marin-Garcia, P. and Miras-Portugal, M. A. (2008) Glutamate release and synapsin-I phosphorylation induced by P2X7 receptors activation in cerebellar granule neurons. Neurochem. Int. 52, 1148-1159. https://doi.org/10.1016/j.neuint.2007.12.004
  19. Leenders, A. G. and Sheng, Z. H. (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol. Ther. 105, 69-84. https://doi.org/10.1016/j.pharmthera.2004.10.012
  20. Lewerenz, J. and Maher, P. (2015) Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front. Neurosci. 9, 469. https://doi.org/10.3389/fnins.2015.00469
  21. Lin, F. J., Yen, F. L., Chen, P. C., Wang, M. C., Lin, C. N., Lee, C. W. and Ko, H. H. (2014) HPLC-fingerprints and antioxidant constituents of Phyla nodiflora. Sci. World J. 2014, 528653.
  22. Lin, Z. C., Lee, C. W., Tsai, M. H., Ko, H. H., Fang, J. Y., Chiang, Y. C., Liang, C.J., Hsu, L.F., Hu, S.C.S. and Yen, F. L. (2016) Eupafolin nanoparticles protect HaCaT keratinocytes from particulate matter-induced inflammation and oxidative stress. Int. J. Nanomedicine 11, 3907-3926. https://doi.org/10.2147/IJN.S109062
  23. Llinas, R., Gruner, J. A., Sugimori, M., McGuinness, T. L. and Greengard, P. (1991) Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J. Physiol. 436, 257-282. https://doi.org/10.1113/jphysiol.1991.sp018549
  24. Lu, C. W., Hung, C. F., Lin, T. Y., Hsieh, T. Y. and Wang, S. J. (2019) Allicin inhibits glutamate release from rat cerebral cortex nerve terminals through suppressing Ca(2+) influx and protein kinase C activity. J. Med. Food 22, 696-702. https://doi.org/10.1089/jmf.2018.4337
  25. Lu, C. W., Lin, T. Y., Chiu, K. M., Lee, M. Y., Huang, J. H. and Wang, S. J. (2020) Silymarin inhibits glutamate release and prevents against kainic acid-induced excitotoxic injury in rats. Biomedicines 8, 486. https://doi.org/10.3390/biomedicines8110486
  26. McEntee, W. J. and Crook, T. H. (1993) Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology (Berl.) 111, 391-401. https://doi.org/10.1007/BF02253527
  27. Mdzinarishvili, A., Sumbria, R., Lang, D. and Klein, J. (2012) Ginkgo extract EGb761 confers neuroprotection by reduction of glutamate release in ischemic brain. J. Pharm. Pharm. Sci. 15, 94-102. https://doi.org/10.18433/J3PS37
  28. Millan, C. and Sanchez-Prieto, J. (2002) Differential coupling of N- and P/Q-type calcium channels to glutamate exocytosis in the rat cerebral cortex. Neurosci. Lett. 330, 29-32. https://doi.org/10.1016/S0304-3940(02)00719-X
  29. Murthy, V. N. (1999) Optical detection of synaptic vesicle exocytosis and endocytosis. Curr. Opin. Neurobiol. 9, 314-320. https://doi.org/10.1016/S0959-4388(99)80046-4
  30. Nicholls, D. G. (1998) Presynaptic modulation of glutamate release. Prog. Brain Res. 116, 15-22. https://doi.org/10.1016/S0079-6123(08)60427-6
  31. Nicholls, D. G., Sihra, T. S. and Sanchez-Prieto, J. (1987) Calciumdependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem. 49, 50-57. https://doi.org/10.1111/j.1471-4159.1987.tb03393.x
  32. Nichols, R. A., Sihra, T. S., Czernik, A. J., Nairn, A. C. and Greengard, P. (1990) Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343, 647-651. https://doi.org/10.1038/343647a0
  33. Obrenovitch, T. P. and Urenjak, J. (1997) Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog. Neurobiol. 51, 39-87. https://doi.org/10.1016/S0301-0082(96)00049-4
  34. Ohyama, A., Hosaka, K., Komiya, Y., Akagawa, K., Yamauchi, E., Taniguchi, H., Sasagawa, N., Kumakura, K., Mochida, S., Yamauchi, T. and Igarashi, M. (2002) Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulinactivated protein kinase II to syntaxin 1A. J. Neurosci. 22, 3342-3351. https://doi.org/10.1523/jneurosci.22-09-03342.2002
  35. Parvez, M. K. (2018) Natural or plant products for the treatment of neurological disorders: current knowledge. Curr. Drug Metab. 19, 424-428. https://doi.org/10.2174/1389200218666170710190249
  36. Rehman, M. U., Wali, A. F., Ahmad, A., Shakeel, S., Rasool, S., Ali, R., Rashid, S. M., Madkhali, H., Ganaie, M. A. and Khan, R. (2019) Neuroprotective strategies for neurological disorders by natural products: an update. Curr. Neuropharmacol. 17, 247-267. https://doi.org/10.2174/1570159x16666180911124605
  37. Tibbs, G. R., Barrie, A. P., Van Mieghem, F. J., McMahon, H. T. and Nicholls, D. G. (1989) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release. J. Neurochem. 53, 1693-1699. https://doi.org/10.1111/j.1471-4159.1989.tb09232.x
  38. Vazquez, E. and Sanchez-Prieto, J. (1997) Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Eur. J. Neurosci. 9, 2009-2018. https://doi.org/10.1111/j.1460-9568.1997.tb01369.x
  39. Wang, Z. W. (2008) Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol. Neurobiol. 38, 153-166. https://doi.org/10.1007/s12035-008-8039-7
  40. Wong, S. B., Cheng, S. J., Hung, W. C., Lee, W. T. and Min, M. Y. (2015) Rosiglitazone suppresses in vitro seizures in hippocampal slice by inhibiting presynaptic glutamate release in a model of temporal lobe epilepsy. PLoS ONE 10, e0144806. https://doi.org/10.1371/journal.pone.0144806
  41. Zhang, H., Chen, M. K., Li, K., Hu, C., Lu, M. H. and Situ, J. (2017) Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation. Biomed. Pharmacother. 85, 704-711. https://doi.org/10.1016/j.biopha.2016.11.083
  42. Zhou, Y. and Danbolt, N. C. (2014) Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. (Vienna) 121, 799-817. https://doi.org/10.1007/s00702-014-1180-8