Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.046

Eupafolin Suppresses P/Q-Type Ca2+ Channels to Inhibit Ca2+/Calmodulin-Dependent Protein Kinase II and Glutamate Release at Rat Cerebrocortical Nerve Terminals  

Chang, Anna (School of Medicine, Fu Jen Catholic University)
Hung, Chi-Feng (School of Medicine, Fu Jen Catholic University)
Hsieh, Pei-Wen (Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology)
Ko, Horng-Huey (Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University)
Wang, Su-Jane (School of Medicine, Fu Jen Catholic University)
Publication Information
Biomolecules & Therapeutics / v.29, no.6, 2021 , pp. 630-636 More about this Journal
Abstract
Eupafolin, a constituent of the aerial parts of Phyla nodiflora, has neuroprotective property. Because reducing the synaptic release of glutamate is crucial to achieving pharmacotherapeutic effects of neuroprotectants, we investigated the effect of eupafolin on glutamate release in rat cerebrocortical synaptosomes and explored the possible mechanism. We discovered that eupafolin depressed 4-aminopyridine (4-AP)-induced glutamate release, and this phenomenon was prevented in the absence of extracellular calcium. Eupafolin inhibition of glutamate release from synaptic vesicles was confirmed through measurement of the release of the fluorescent dye FM 1-43. Eupafolin decreased 4-AP-induced [Ca2+]i elevation and had no effect on synaptosomal membrane potential. The inhibition of P/Q-type Ca2+ channels reduced the decrease in glutamate release that was caused by eupafolin, and docking data revealed that eupafolin interacted with P/Q-type Ca2+ channels. Additionally, the inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) prevented the effect of eupafolin on evoked glutamate release. Eupafolin also reduced the 4-AP-induced activation of CaMK II and the subsequent phosphorylation of synapsin I, which is the main presynaptic target of CaMKII. Therefore, eupafolin suppresses P/Q-type Ca2+ channels and thereby inhibits CaMKII/synapsin I pathways and the release of glutamate from rat cerebrocortical synaptosomes.
Keywords
Eupafolin; Glutamate release; P/Q-type $Ca^{2+}$ channels; CaMKII; Synapsin I; Cerebrocortical synaptosomes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dunkley, P. R., Jarvie, P. E., Heath, J. W., Kidd, G. J. and Rostas, J. A. (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res. 372, 115-129.   DOI
2 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450.   DOI
3 Lu, C. W., Lin, T. Y., Chiu, K. M., Lee, M. Y., Huang, J. H. and Wang, S. J. (2020) Silymarin inhibits glutamate release and prevents against kainic acid-induced excitotoxic injury in rats. Biomedicines 8, 486.   DOI
4 Millan, C. and Sanchez-Prieto, J. (2002) Differential coupling of N- and P/Q-type calcium channels to glutamate exocytosis in the rat cerebral cortex. Neurosci. Lett. 330, 29-32.   DOI
5 Nicholls, D. G. (1998) Presynaptic modulation of glutamate release. Prog. Brain Res. 116, 15-22.   DOI
6 Nicholls, D. G., Sihra, T. S. and Sanchez-Prieto, J. (1987) Calciumdependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem. 49, 50-57.   DOI
7 Ohyama, A., Hosaka, K., Komiya, Y., Akagawa, K., Yamauchi, E., Taniguchi, H., Sasagawa, N., Kumakura, K., Mochida, S., Yamauchi, T. and Igarashi, M. (2002) Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulinactivated protein kinase II to syntaxin 1A. J. Neurosci. 22, 3342-3351.   DOI
8 Mdzinarishvili, A., Sumbria, R., Lang, D. and Klein, J. (2012) Ginkgo extract EGb761 confers neuroprotection by reduction of glutamate release in ischemic brain. J. Pharm. Pharm. Sci. 15, 94-102.   DOI
9 Rehman, M. U., Wali, A. F., Ahmad, A., Shakeel, S., Rasool, S., Ali, R., Rashid, S. M., Madkhali, H., Ganaie, M. A. and Khan, R. (2019) Neuroprotective strategies for neurological disorders by natural products: an update. Curr. Neuropharmacol. 17, 247-267.   DOI
10 Tibbs, G. R., Barrie, A. P., Van Mieghem, F. J., McMahon, H. T. and Nicholls, D. G. (1989) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release. J. Neurochem. 53, 1693-1699.   DOI
11 Obrenovitch, T. P. and Urenjak, J. (1997) Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog. Neurobiol. 51, 39-87.   DOI
12 Hinds, H. L., Goussakov, I., Nakazawa, K., Tonegawa, S. and Bolshakov, V. Y. (2003) Essential function of alpha-calcium/calmodulin-dependent protein kinase II in neurotransmitter release at a glutamatergic central synapse. Proc. Natl. Acad. Sci. U.S.A. 100, 4275-4280.   DOI
13 Berridge, M. J. (1998) Neuronal calcium signaling. Neuron 21, 13-26.   DOI
14 Hudmon, A. and Schulman, H. (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473-510.   DOI
15 Lee, C. W., Lin, Z. C., Hsu, L. F, Fang, J. Y., Chiang, Y. C., Tsai, M. H., Lee, M. H., Li, S. Y., Hu, S. C., Lee, I. T. and Yen, F. L. (2016) Eupafolin ameliorates COX-2 expression and PGE2 production in particulate pollutants-exposed human keratinocytes through ROS/MAPKs pathways. J. Ethnopharmacol. 189, 300-309.   DOI
16 Abbasi, A. M., Khan, M. A., Ahmad, M., Zafar, M., Jahan, S. and Sultana, S. (2010) Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J. Ethnopharmacol. 128, 322-335.   DOI
17 Akerman, K. E., Scott, I. G., Heikkila, J. E. and Heinonen, E. (1987) Ionic dependence of membrane potential and glutamate receptorlinked responses in synaptoneurosomes as measured with a cyanine dye, DiS-C2-(5). J. Neurochem. 48, 552-559.   DOI
18 Chang, Y., Lu, C. W., Lin, T. Y., Huang, S. K. and Wang, S. J. (2016) Baicalein, a constituent of Scutellaria baicalensis, reduces glutamate release and protects neuronal cell against kainic acid-induced excitotoxicity in rats. Am. J. Chinese Med. 44, 943-962.   DOI
19 Chen, X., Yao, Z., Peng, X., Wu, L., Wu , H., Ou, Y. and Lai, J. (2020) Eupafolin alleviates cerebral ischemia/reperfusion injury in rats via blocking the TLR4/NF κB signaling pathway. Mol. Med. Rep. 22, 5135-5144.   DOI
20 Chi, P., Greengard, P. and Ryan, T. A. (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69-78.   DOI
21 Ko, H. H., Chiang, Y. C., Tsai, M. H., Liang, C. J., Hsu, L. F., Li, S. Y., Wang, M. C., Yen, F.L., and Lee, C. W. (2014) Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: role of MAPK and Akt pathways. J. Ethnopharmacol. 151, 386-393.   DOI
22 Lewerenz, J. and Maher, P. (2015) Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front. Neurosci. 9, 469.   DOI
23 Baldwin, M. L., Rostas, J. A. and Sim, A. T. (2003) Two modes of exocytosis from synaptosomes are differentially regulated by protein phosphatase types 2A and 2B. J. Neurochem. 85, 1190-1199.   DOI
24 Bano, D. and Ankarcrona, M. (2018) Beyond the critical point: an overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci. Lett. 663, 79-85.   DOI
25 Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634.   DOI
26 Llinas, R., Gruner, J. A., Sugimori, M., McGuinness, T. L. and Greengard, P. (1991) Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J. Physiol. 436, 257-282.   DOI
27 Lazarevic, V., Yang, Y., Ivanova, D., Fejtova, A., and Svenningsson, P. (2018) Riluzole attenuates the efficacy of glutamatergic transmission by interfering with the size of the readily releasable neurotransmitter pool. Neuropharmacology 143, 38-48.   DOI
28 Leon, D., Sanchez-Nogueiro, J., Marin-Garcia, P. and Miras-Portugal, M. A. (2008) Glutamate release and synapsin-I phosphorylation induced by P2X7 receptors activation in cerebellar granule neurons. Neurochem. Int. 52, 1148-1159.   DOI
29 Vazquez, E. and Sanchez-Prieto, J. (1997) Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Eur. J. Neurosci. 9, 2009-2018.   DOI
30 Wang, Z. W. (2008) Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol. Neurobiol. 38, 153-166.   DOI
31 Leenders, A. G. and Sheng, Z. H. (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol. Ther. 105, 69-84.   DOI
32 Murthy, V. N. (1999) Optical detection of synaptic vesicle exocytosis and endocytosis. Curr. Opin. Neurobiol. 9, 314-320.   DOI
33 Wong, S. B., Cheng, S. J., Hung, W. C., Lee, W. T. and Min, M. Y. (2015) Rosiglitazone suppresses in vitro seizures in hippocampal slice by inhibiting presynaptic glutamate release in a model of temporal lobe epilepsy. PLoS ONE 10, e0144806.   DOI
34 Zhou, Y. and Danbolt, N. C. (2014) Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. (Vienna) 121, 799-817.   DOI
35 Zhang, H., Chen, M. K., Li, K., Hu, C., Lu, M. H. and Situ, J. (2017) Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation. Biomed. Pharmacother. 85, 704-711.   DOI
36 Parvez, M. K. (2018) Natural or plant products for the treatment of neurological disorders: current knowledge. Curr. Drug Metab. 19, 424-428.   DOI
37 Lin, F. J., Yen, F. L., Chen, P. C., Wang, M. C., Lin, C. N., Lee, C. W. and Ko, H. H. (2014) HPLC-fingerprints and antioxidant constituents of Phyla nodiflora. Sci. World J. 2014, 528653.
38 Lin, Z. C., Lee, C. W., Tsai, M. H., Ko, H. H., Fang, J. Y., Chiang, Y. C., Liang, C.J., Hsu, L.F., Hu, S.C.S. and Yen, F. L. (2016) Eupafolin nanoparticles protect HaCaT keratinocytes from particulate matter-induced inflammation and oxidative stress. Int. J. Nanomedicine 11, 3907-3926.   DOI
39 Lu, C. W., Hung, C. F., Lin, T. Y., Hsieh, T. Y. and Wang, S. J. (2019) Allicin inhibits glutamate release from rat cerebral cortex nerve terminals through suppressing Ca(2+) influx and protein kinase C activity. J. Med. Food 22, 696-702.   DOI
40 McEntee, W. J. and Crook, T. H. (1993) Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology (Berl.) 111, 391-401.   DOI
41 Nichols, R. A., Sihra, T. S., Czernik, A. J., Nairn, A. C. and Greengard, P. (1990) Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343, 647-651.   DOI
42 Barrie, A. P., Nicholls, D. G., Sanchez-Prieto, J. and Sihra, T. S. (1991) An ion channel locus for the protein kinase C potentiation of transmitter glutamate release from guinea pig cerebrocortical synaptosomes. J. Neurochem. 57, 1398-1404.   DOI