• Title/Summary/Keyword: DoS Attack Detection

Search Result 90, Processing Time 0.024 seconds

Traffic Seasonality aware Threshold Adjustment for Effective Source-side DoS Attack Detection

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2651-2673
    • /
    • 2019
  • In order to detect Denial of Service (DoS) attacks, victim-side detection methods are used popularly such as static threshold-based method and machine learning-based method. However, as DoS attacking methods become more sophisticated, these methods reveal some natural disadvantages such as the late detection and the difficulty of tracing back attackers. Recently, in order to mitigate these drawbacks, source-side DoS detection methods have been researched. But, the source-side DoS detection methods have limitations if the volume of attack traffic is relatively very small and it is blended into legitimate traffic. Especially, with the subtle attack traffic, DoS detection methods may suffer from high false positive, considering legitimate traffic as attack traffic. In this paper, we propose an effective source-side DoS detection method with traffic seasonality aware adaptive threshold. The threshold of detecting DoS attack is adjusted adaptively to the fluctuated legitimate traffic in order to detect subtle attack traffic. Moreover, by understanding the seasonality of legitimate traffic, the threshold can be updated more carefully even though subtle attack happens and it helps to achieve low false positive. The extensive evaluation with the real traffic logs presents that the proposed method achieves very high detection rate over 90% with low false positive rate down to 5%.

Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates (False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석)

  • Jang, Beom-Soo;Lee, Joo-Young;Jung, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.139-149
    • /
    • 2010
  • Internet was designed for network scalability and best-effort service which makes all hosts connected to Internet to be vulnerable against attack. Many papers have been proposed about attack detection algorithms against the attack using IP spoofing and DoS/DDoS attack. Purpose of DoS/DDoS attack is achieved in short period after the attack begins. Therefore, DoS/DDoS attack should be detected as soon as possible. Attack detection algorithms using false alarm rates consist of the false negative rate and the false positive rate. Moreover, they are important metrics to evaluate the attack detections. In this paper, we analyze the performance of the attack detection algorithms using the impact of false negative rate and false positive rate variation to the normal traffic and the attack traffic by simulations. As the result of this, we find that the number of passed attack packets is in the proportion to the false negative rate and the number of passed normal packets is in the inverse proportion to the false positive rate. We also analyze the limits of attack detection due to the relation between the false negative rate and the false positive rate. Finally, we propose a solution to minimize the limits of attack detection algorithms by defining the network state using the ratio between the number of packets classified as attack packets and the number of packets classified as normal packets. We find the performance of attack detection algorithm is improved by passing the packets classified as attacks.

An Adaptive Probe Detection Model using Fuzzy Cognitive Maps

  • Lee, Se-Yul;Kim, Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.660-663
    • /
    • 2003
  • The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using Fuzzy Cognitive Maps(FCM) that can detect intrusion by the Denial of Service(DoS) attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The Sp flooding Preventer using Fuzzy cognitive maps(SPuF) model captures and analyzes the packet information to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. The result of simulating the "KDD ′99 Competition Data Set" in the SPuF model shows that the Probe detection rates were over 97 percentages.

  • PDF

Design and Implementation of an SNMP-Based Traffic Flooding Attack Detection System (SNMP 기반의 실시간 트래픽 폭주 공격 탐지 시스템 설계 및 구현)

  • Park, Jun-Sang;Kim, Sung-Yun;Park, Dai-Hee;Choi, Mi-Jung;Kim, Myung-Sup
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.13-20
    • /
    • 2009
  • Recently, as traffic flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems (IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network traffic. In this paper we propose an SNMP-based lightweight and fast detection algorithm for traffic flooding attacks, which minimizes the processing and network overhead of the detection system, minimizes the detection time, and provides high detection rate. The attack detection algorithm consists of three consecutive stages. The first stage determines the detection timing using the update interval of SNMP MIB. The second stage analyzes attack symptoms based on correlations of MIB data. The third stage determines whether an attack occurs or not and figure out the attack type in case of attack.

Design of Hybrid Network Probe Intrusion Detector using FCM

  • Kim, Chang-Su;Lee, Se-Yul
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The advanced computer network and Internet technology enables connectivity of computers through an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, making it vulnerable to previously unidentified attack patterns and variations in attack and increasing false negatives. Intrusion detection and prevention technologies are thus required. We proposed a network based hybrid Probe Intrusion Detection model using Fuzzy cognitive maps (PIDuF) that detects intrusion by DoS (DDoS and PDoS) attack detection using packet analysis. A DoS attack typically appears as a probe and SYN flooding attack. SYN flooding using FCM model captures and analyzes packet information to detect SYN flooding attacks. Using the result of decision module analysis, which used FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.064% and the max-average false negative rate of 2.936%. The true positive error rate of the PIDuF is similar to that of Bernhard's true positive error rate.

Intrusion Detection System for In-Vehicle Network to Improve Detection Performance Considering Attack Counts and Attack Types (공격 횟수와 공격 유형을 고려하여 탐지 성능을 개선한 차량 내 네트워크의 침입 탐지 시스템)

  • Hyunchul, Im;Donghyeon, Lee;Seongsoo, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.622-627
    • /
    • 2022
  • This paper proposes an intrusion detection system for in-vehicle network to improve detection performance considering attack counts and attack types. In intrusion detection system, both FNR (False Negative Rate), where intrusion frame is misjudged as normal frame, and FPR (False Positive Rate), where normal frame is misjudged as intrusion frame, seriously affect vechicle safety. This paper proposes a novel intrusion detection algorithm to improve both FNR and FPR, where data frame previously detected as intrusion above certain attack counts is automatically detected as intrusion and the automatic intrusion detection method is adaptively applied according to attack types. From the simulation results, the propsoed method effectively improve both FNR and FPR in DoS(Denial of Service) attack and spoofing attack.

RIDS: Random Forest-Based Intrusion Detection System for In-Vehicle Network (RIDS: 랜덤 포레스트 기반 차량 내 네트워크 칩입 탐지 시스템)

  • Daegi, Lee;Changseon, Han;Seongsoo, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.614-621
    • /
    • 2022
  • This paper proposes RIDS (Random Forest-Based Intrusion Detection), which is an intrusion detection system to detect hacking attack based on random forest. RIDS detects three typical attacks i.e. DoS (Denial of service) attack, fuzzing attack, and spoofing attack. It detects hacking attack based on four parameters, i.e. time interval between data frames, its deviation, Hamming distance between payloads, and its diviation. RIDS was designed in memory-centric architecture and node information is stored in memories. It was designed in scalable architecture where DoS attack, fuzzing attack, and spoofing attack can be all detected by adjusting number and depth of trees. Simulation results show that RIDS has 0.9835 accuracy and 0.9545 F1 score and it can detect three attack types effectively.

Defending HTTP Web Servers against DDoS Attacks through Busy Period-based Attack Flow Detection

  • Nam, Seung Yeob;Djuraev, Sirojiddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2512-2531
    • /
    • 2014
  • We propose a new Distributed Denial of Service (DDoS) defense mechanism that protects http web servers from application-level DDoS attacks based on the two methodologies: whitelist-based admission control and busy period-based attack flow detection. The attack flow detection mechanism detects attach flows based on the symptom or stress at the server, since it is getting more difficult to identify bad flows only based on the incoming traffic patterns. The stress is measured by the time interval during which a given client makes the server busy, referred to as a client-induced server busy period (CSBP). We also need to protect the servers from a sudden surge of attack flows even before the malicious flows are identified by the attack flow detection mechanism. Thus, we use whitelist-based admission control mechanism additionally to control the load on the servers. We evaluate the performance of the proposed scheme via simulation and experiment. The simulation results show that our defense system can mitigate DDoS attacks effectively even under a large number of attack flows, on the order of thousands, and the experiment results show that our defense system deployed on a linux machine is sufficiently lightweight to handle packets arriving at a rate close to the link rate.

A Probe Prevention Model for Detection of Denial of Service Attack on TCP Protocol (TCP 프로토콜을 사용하는 서비스거부공격 탐지를 위한 침입시도 방지 모델)

  • Lee, Se-Yul;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2003
  • The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using FCM(Fuzzy Cognitive Maps) that can detect intrusion by the DoS attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The SPuF(Syn flooding Preventer using Fussy cognitive maps) model captures and analyzes the packet informations to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance comparison, the "KDD′99 Competition Data Set" made by MIT Lincoln Labs was used. The result of simulating the "KDD′99 Competition Data Set" in the SPuF model shows that the probe detection rates were over 97 percentages.

Intrusion Detection System for Denial of Service Attack using Performance Signature (성능 시그네쳐를 이용한 서비스 거부 공격 침입탐지 시스템 설계)

  • Kim, Gwang-Deuk;Lee, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3011-3019
    • /
    • 1999
  • Denial of service is about knocking off services, without permission for example through crashing the whole system. This kind of attacks are easy to launch and it is hard to protect a system against them. The basic problem is that Unix assumes that users on the system or on other systems will be well behaved. This paper analyses system-based inside denial of services attack(DoS) and system metric for performance of each machine provided. And formalize the conclusions results in ways that clearly expose the performance impact of those observations. So, we present new approach. It is detecting DoS attack using performance signature for system and program behavior. We present new approach. It is detecting DoS attack using performance signature for system and program behavior. We believe that metric will be to guide to automated development of a program to detect the attack. As a results, we propose the AIDPS(Architecture for Intrusion Detection using Performance Signature) model to detect DoS attack using performance signature.

  • PDF