• Title/Summary/Keyword: Divided Channel

Search Result 390, Processing Time 0.028 seconds

Analysis of the Changes of the Vegetated Area in an Unregulated River and Their Underlying Causes: A Case Study on the Naeseong Stream

  • Lee, Chanjoo;Kim, Donggu
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.229-245
    • /
    • 2018
  • This study aims to investigate the changes in the riparian vegetated area in the Naeseong stream, an unregulated river, in order to analyze the main factors leading to these changes. For this purpose, the land surface cover in the channel area of the Naeseong stream was classified into 9 categories using past aerial photographs collected between 1970 and 2016, which recorded the long-term changes of the Naeseong stream. The increase or decrease in the vegetated area was calculated for each category using a pair of before and after images. The changes in the vegetated area were divided into 6 periods: the unvegetated channel period (1970 - 1980), the first rapid increase (1980 - 1986), the period of decrease due to flood (1986 - 1988), the period of repetitive man-induced disturbance and vegetation increase (1988 - 2008), the period of gradual vegetation increase (2008 - 2013), and the period of second rapid increase (2013 - 2016). Multiple regression analysis was performed using independent variables representing hydrology, climate, and geomorphology. The major variables found to be involved in the changes in the vegetated area of the Naeseong stream were the discharge during June - July, channel width, and temperature during April - June. Among the three variables, discharge and temperature were respectively the main independent variables in the downstream and the upstream reaches as per a single variable model. Channel width was the variable that distinguished the upstream and downstream reaches of the stream. The implication of the long-term increase in the vegetated area in the Naeseong stream was discussed based on the result of this study.

Performance Analysis of the Dynamic Minislot reservation Protocol in Single-hop WDM Networks (단일-홉 파장분할 다중화 통신망에서 동적 미니슬롯 예약 프로토콜의 성능분석)

  • Jeong, Kil-Hyun;Lee, Jong-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.205-215
    • /
    • 2002
  • In this paper the Dynamic Minislot Reservation Protocol(DMRP) in which the control channel is divided into contention-less and contention minislots in order to reduce re-transmission probability in multicasting is proposed. In the network, earth node has two pairs of transceivers. A transceiver consisting of a fixed transmitter and a fixed receiver is used to control packet registration and the other transceiver is used to transmit data. Two types f transceivers for data transmission are considered : one is FT-TR(Fixed Transmitter-Tunable Receiver) and the other is TT-TR(Tunable Transmitter-Tunable Receiver). In the analysis, FT-TR and TT-TR single-hop passive star networks are compared. As results, we conclude that the DMRP protocol with dynamically divided control channel has improved the system performance such as throughput and system delay regardless of traffic type or network structure.

Changes in Physico-chemical Properties of Moss Peat Based Root Media and Growth of Potted Chrysanthemums as Influenced by Blending Ratios of Root Media in a C-channel Mat Irrigation System

  • Kang, Seung-Won;Hong, Jong-Won;Lee, Gung-Pyo;Seo, Sang-Gyu;Pak, Chun-Ho
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.201-210
    • /
    • 2011
  • This experiment was conducted to investigate physical and chemical characteristics by volume fractions of root media using peatmoss, perlite, and vermiculite, along with effects on the growth of pot chrysanthemums (Dendranthema ${\times}$ grandiflorum 'Vemini') in a C-channel mat irrigation system. To evaluate the physico-chemical properties of 20 root media, the bulk density, particle density, total pore space, pore space, ash content, organic matter, pH, and electrical conductivity were measured and data were analyzed using principal component analysis (PCA). PCA scores revealed that physico-chemical properties changed by the blending of peatmoss, perlite, and vermiculite. The 20 root media were divided into three main groups by hierarchical cluster analysis. At the end of the experiment, the pH and EC of the root media were measured from media divided into four layers. The pH of root media without plants showed a strong linear relationship and the pH of root media with plants increased exponentially. The change of EC in the root medium was indicated as a hyperbolic curve. Plant growth characteristics according to growth in the 20 root media were analyzed by PCA. It was found that the mixing ratios of the root media affected plant growth characteristics. Therefore, mixing ratio is an important factor for pot-plant production in a subirrigation system.

The Development of the Hantan River Basin, Korea and the Age of the Sediment on the top of the Chongok Basalt (한탄강유역의 발달과정과 전곡현무암 위의 퇴적물의 연대)

  • Bae, Kidong
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.87-101
    • /
    • 1989
  • The development of the Hantan river basin can be divided into three stages. The first stage include the ancient Hantan channel system prior to the Chongokni basalt which yield dates of about 0.6 mya from the K/Ar dating method. During this period the Baekuyri formation was formed. The Baekuyri formation is widely observed under the Chongokni basalt along the current river system. The second stage is the period when stream channels stayed on the top of the basalt plateau. Aggradation and deggradation were continued by meandering and braiding channel systems until major stream channel was formed. The currently remaining deposit on the top of the basalt was formed by lacustrine and fluvial systems in this period. During this period Pleistocene hominid was present on edge of water and flood plain and left Paleolithic material. This period was begun at the time of the final basalt flow dated about 300,000 BP. The third stage is designed for the time when the Hantan river channel was dropped down to a level from which the channel could not influence the top of the basalt any more No more deposit could be formed but erosion by surface water has been continued on the top of the basalt since then. The dropping of the Hantan river channel was probably not very long after the final flow of the basalt. Because of frost action and heavy concentrated precipitation in the basin area along with blocky and clumnar joint structure of the basalt, erosional process of the basalt is believed to have been carried out within a relatively short time. The lowering of the Hantan river channel was probably completed in a cycle of major fluctuation of world cimate. Also, the redclay on the top of the basalt is believed to have been formed during a warm period around 200,000 BP, which accords with the climatic change suggested above fair1y well. The Paleolithic materials in tile deposits fell accordingly into approximately same time period.

  • PDF

Determination of Mode Dispersion Curves of Surface Wave Using HWAW Method (HWAW(Harmonic Wavelet Analysis of Wave)방법을 이용한 표면파 모드 분산곡선의 결정)

  • Park, Hyung-Choon;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2006
  • The evaluation of shear modulus is very important in various fields of civil engineering. Non-destructive seismic methods can be used to determine shear wave velocity ($V_s$) profile. Non-destructive seismic methods geneally consist of three steps: field testing, evaluation of dispersion curve, and determination of Vs profile by inversion process. Non-destructive seismic methods can be divided into two categories according to the number of receivers used for data reduction: two-channel tests and multi-channel tests. Two channel tests use apparent velocity dispersion curve and multi-channel tests use mode dispersion curves. Multi-channel tests using mode dispersion curve can reduce calculation time to determine soil profile and uncertainties in inversion process. So far, only multi-channel tests can determine mode dispersion curves but multi-channel test needs many receivers to determine reasonable mode dispersion curves. In this paper, HWAW (Harmonic Wavelet Analysis of Wave) method is applied to determine mode dispersion curves. HWAW method uses short test setup which consists of two receivers with a spacing of 1 to 3 m. Through numerical simulations and field application, it is shown that HWAW can determine resonable mode disperson curves.

Formative Ages and Processes by Types of Natural Abandoned Channels in Korea (우리나라 자연 구하도의 유형별 형성시기와 형성과정)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.1-15
    • /
    • 2012
  • The formative ages and processes of five natural abandoned channels in three types in Korea are studied. The former meandering channel in Seongsandong, Uljin-gun was abandoned due to the neck-cutoff of incised meander, Wangpi River in approximately 2.5~2.6ka and the abandoned channel in Bulyeong Temple, Uljin-gun was formed by the neck-cutoff of Wangpi River in approximately 90ka. Deduced from these results, it is judged to favorable for formation of abandoned channels by incised meander cutoff in interglacial or interstadial stages that had a better condition for meander cutoff because of active lateral erosion. Due to the corrosion of limestone joints in the underground of ridges between Hwangji River and Cheolam River, the channel in Gumumso, Taebaek-si was abandoned by the stream piracy connecting and combining the rivers into a limestone cave in approximately 40ka and higher lower reaches of Dong River than Banbyeon River in Seonbawi, Yeongyang-gun was turned to the abandoned channel throughout the stream piracy between the rivers in approximately 1.4ka. During Last Glacial Maximum in Jangcheon-ri, Chungju-si, Namhan River was divided into the eastern and western tributaries due to the alluvial island in approximately 10ka and then the western tributary was abandoned recently.

The control signal construction for multi channel X-ray detector signal acquisition (다채널 X-선 검출기 신호 획득을 위한 제어 신호 구성)

  • Yi, Yun;Kim, Sung-Won;Lee, Sun-Wha;Seo, Min-Seog;Lee, Hyun-Woo;Moon, Seon-Ho;Han, Bum-Soo;Kim, In-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2839-2842
    • /
    • 2003
  • The paper is proposed for control signals to operate X-ray detector signal acquisition system There are control signals and synchronized signals for data acquisition system. X-ray detector signal acquisition system is divided into pre-treatment part which is to amplify acquired dual 16 channel analog input, converter pan which is to multiplex, and convert data and transmit part that combine transferred data output and address in order. It also describes detailed control signals.

  • PDF

Deep Recurrent Neural Network for Multiple Time Slot Frequency Spectrum Predictions of Cognitive Radio

  • Tang, Zhi-ling;Li, Si-min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3029-3045
    • /
    • 2017
  • The main processes of a cognitive radio system include spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion. Experimental results show that these stages introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was proposed to predict the spectrum of multiple time slots, since the existing methods only predict the spectrum of one time slot. The continuous state of a channel is divided into a many time slots, forming a time series of the channel state. Since there are more hidden layers in the DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the past input. In addition, the extended Kalman filter was used to train the DRNN, which overcomes the problem of slow convergence and the vanishing gradient of the gradient descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, and the error of the prediction was analyzed. The simulation results proved that the multiple slot spectrum prediction improved the spectrum efficiency and reduced the energy consumption of spectrum sensing.

An Experimental Study on the Performance of a Surface Piercing Propeller in Tunnel (수면관통형 터널 프로펠러의 성능해석을 위한 실험적 연구)

  • Jeong, Seong-Wook;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.294-303
    • /
    • 2006
  • A surface piercing propeller (SPP) in tunnel has been proposed recently as a new propulsion system for a high speed air cavity ship. The purpose of the present study is to investigate the characteristics of the SPP in tunnel through a series of model tests. A model propulsion system is placed on a dummy body made of Acrylics. The tunnel is divided into two regions by a guide vane extending from the inlet to the center of the propeller shaft. Air has been supplied from an air nozzle placed at the bottom of the dummy body and the changes in propeller performances caused by the air flow are investigated. The measurements are done for open water and in-tunnel conditions, both for fully and partially submerged propeller. The influence of the guide vane configurations on the propeller performance is also studied. The experiments are performed at the variable pressure circulation water channel of Inha University

A REVIEW ON THE MATHEMATICAL ASPECTS OF FLUID FLOW PROBLEMS IN AN INFINITE CHANNEL WITH ARBITRARY BOTTOM TOPOGRAPHY

  • Chakrabarti, A.;Martha, S.C.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1583-1602
    • /
    • 2011
  • A special system of partial differential equations (PDEs) occur in a natural way while studying a class of irrotational inviscid fluid flow problems involving infinite channels. Certain aspects of solutions of such PDEs are analyzed in the context of flow problems involving multiple layers of fluids of different constant densities in a channel associated with arbitrary bottom topography. The whole analysis is divided into two parts-part A and part B. In part A the linearized theory is employed along with the standard Fourier analysis to understand such flow problems and physical quantities of interest are derived analytically. In part B, the same set of problems handled in part A are examined in the light of a weakly non-linear theory involving perturbation in terms of a small parameter and it is shown that the original problems can be cast into KdV type of nonlinear PDEs involving the bottom topography occurring in one of the coefficients of these equations. Special cases of bottom topography are worked out in detail and expressions for quantities of physical importance are derived.