• Title/Summary/Keyword: Diversity gain

Search Result 480, Processing Time 0.023 seconds

Performance Analysis of Quasi-Orthogonal Space-Time Block Coded OFDM Systems (준직교 시공간 블록 부호화된 OFDM 시스템의 성능 분석)

  • Hwang, Kyu-Sang;Yi, Jong-Sik;Jong, Jae-Pil;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.10-18
    • /
    • 2004
  • As a technique for high-quality multimedia service in down-link, the transmit diversity schemes using a orthogonal space-time block codes were proposed. But if the number of transmit antenna is three or more, it was impossible to obtain full diversity gain because of the decline of spectral efficiency. Accordingly, the quasi-orthogonal space-time block code that not required a additional bandwidth was proposed. But using a space-time block codes, the transmit diversity schemes were verified over quasi-static and frequency non-selective channels. Therefore, in this paper, we analyze the performance of OFDM systems, which a frequency selective channel equalized a frequency non-selective channel, adapting the quasi-orthogonal space-time block code, and compare they to the conventional orthogonal space-time block coded OFDM systems.

  • PDF

Design of a Antenna with Enhanced Isolation for US-PCS Indoor Repeater (격리도가 향상된 US-PCS 대역 댁내용 중계기 안테나 설계)

  • Ahn Jung-Sun;Lee Jin-Sung;Jung Byung-Woon;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.9-18
    • /
    • 2005
  • This paper presents an antenna for US-PCS band indoor repeaters with enhancement of isolation. In common repeaters require an enough isolation to reduce the interferences between transmitted and received signals. Thus, it is investigated to improve front-to-back ratio of IBD(Integrated Balun Dipole) antenna which has a good linear polarization with a cavity or multi-cavity by using polarization diversity and aperture matching method. From the simulated and measured results, the antenna realized by using polarization diversity and aperture matching method has a VSWR below 1.5, gain over 8 dBi and enhanced isolation of 15$\~$24 dB in US-PCS band.

Performance Analysis of QoS control scheme for PoC services with multiple sessions under the radio channel environment (무선채널을 포함한 다중세션 품질제어에 의한 PoC서비스의 QoS보장 절차의 제안 및 성능분석)

  • Cho, Mi-Jin;Kim, Jeong-Ho;Lee, Ji-Hye;Kim, Wuk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.122-129
    • /
    • 2009
  • In this paper, we have proposed the QoS (quality of services) control scheme which can adjust data transfer rates of the session participants in response to their radio channel conditions under the time-varying propagation radio environment. The outage probability is selected as the performance index in order to compare the performance of the proposed scheme with the conventional QoS control scheme. The outage probability of the single and multiple paths is mathematically derived here and its numerical results are investigated. The results show that the significant performance improvement can be obtained compared with the conventional scheme and also the diversity gain can improve the radio link outage as the degrees of the multipath diversity increases. Therefore the overall performance improvement in terms of the QoS of the outage probability can be significantly be achieved by applying the proposed scheme.

Performance Analysis of Access Channel Decoder Implemeted for CDMA2000 1X Smart Antenna Base Station (CDMA2000 1X 스마트 안테나 기지국용으로 구현된 액세스 채널 복조기의 성능 분석)

  • 김성도;현승헌;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.147-156
    • /
    • 2004
  • This paper presents an implementation and performance analysis of an access channel decoder which exploits a diversity gain due to the independent magnitude of received signals energy at each of antenna elements of a smart antenna BTS (Base-station Transceiver Subsystem) operating in CDMA2000 1X signal environment. Proposed access channel decoder consists of a searcher supporting 4 fingers, Walsh demodulator, and demodulator controller. They have been implemented with 5 of 1 million-gate FPGA's (Field Programmable Gate Array) Altera's APEX EP20K1000EBC652 and TMS320C6203 DSP (digital signal processing). The objective of the proposed access channel decoders is to enhance the data retrieval at co]1-site during the access period, for which the optimal weight vector of the smart antenna BTS is not available. Through experimental tests, we confirmed that the proposed access channel decoder exploitng the diversity technique outperforms the conventional one, which is based on a single antenna channel, in terms of detection probability of access probe, access channel failure probability, and $E_{b/}$ $N_{o}$ in Walsh demodulator.r.r.

Multi-Cell Transmit Diversity Scheme for OFDMA Systems (OFDMA 시스템을 위한 다중 셀 전송 다양성 기법)

  • Seo, Bangwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.721-727
    • /
    • 2012
  • Since a conventional multi-cell transmit diversity scheme depends on the feedback from the user for the channel gain information, its performance gets to severely degrade when the channel varies fast due to the high mobility of the user. Also, transmit power of the base station cannot be fully used in the conventional scheme because only one transmit antenna is used for data transmission. In this paper, we propose a multi-cell transmit diversity scheme appropriate for fast fading channel. In the proposed scheme, channel-independent precoding vector is applied over all transmit antennas and different precoding vectors are applied for neighboring subcarriers so that the received signal is avoided to experience deep fading over multiple neighboring subcarriers. Simulation results show that the proposed scheme has better detector output signal-to-noise ratio (SNR) and bit error rate (BER) performances than the conventional scheme.

A Study on Clustered OFCDM with Transmit Antenna Diversity and Coding Associated with Frequency Spreading over Frequency Selective Fading Channel (주파수 선택적 페이딩 채널에서 주파수 확산과 결합된 코딩과 송신안테나 다이버시티를 가진 Clustered OFCDM 시스템에 관한 연구)

  • Ryu Kwan-Woong;Park Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.267-273
    • /
    • 2006
  • This paper improves the effects of clustered OFCDM scheme considering the frequency diversity effect over a frequency selective fading channel. In OFCDM with frequency domain spreading compared to OFDM, we can increase uncorrelated symbols by frequency allocation method of correspondent symbols over the same antenna and different antenna after spreading. The simulation results show that the performance of proposed system is improved by approximately 4 dB in ${\sigma}=0.02{\mu}sec$, the performance is improved by approximately 2.5dB in large delay spread in a 12-path Rayleigh fading channel with overall the root mean squared delay spread and the maximum Doppler frequency of 20 Hz. Also, the required average received Eb/No at the average BER of $10^{-3}$ by optimum method is improved by approximately 2.0 dB, compared to that of STA-OFCDM with frequency rearrange. The new method does not require any bandwidth expansion any feedback from the receiver to the transmitter and its computation complexity is similar to clustered OFCDM.

Symbol Based Rate Adaptation in Coded MIMO-OFDM Systems (심볼 기반의 적응 변조 기법을 이용한 채널 부호화된 MIMO-OFDM 시스템)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.50-58
    • /
    • 2008
  • The use of space-division multiple access(SDMA) in the downlink of multiuser multi-input/multi-output(MIMO) wireless transmission systems can provide substantial gains in system throughput. When the channel state information(CSI) is available at the transmitter, a considerable performance improvement can be attained by adapting the transmission rates to the reported CSI. In addition, to combat frequency selective fadings in wideband wireless channels, bit-interleaved coded OFDM(BIC-OFDM) modulation schemes are employed to provide reliable packet delivery by utilizing frequency diversity through channel coding. In this paper, we propose an adaptive modulation and coding(AMC) scheme combined with an opportunistic scheduling technique for the MIMO BIC-OFDM with bandwidth-limited feedback channels. The proposed scheme enhances the link performance by exploiting both the frequency diversity and the multiuser diversity. To reduce the feedback information, the proposed AMC scheme employs rate adaptation methods based on an OFDM symbol rather than on the whole subchannels. Simulation results show that the proposed scheme exhibits a substantial performance gain with a reasonable complexity over single antenna systems.

Design of a Windmill-Shaped Loop Antenna for Polarization Diversity (편파 다이버시티를 위한 바람개비 형태의 루프 안테나 설계)

  • Kim, Doo-Soo;Ahn, Chi-Hyung;Im, Yun-Taek;Lee, Sung-Jun;Lee, Kwang-Chun;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.24-30
    • /
    • 2007
  • A windmill-shaped loop antenna is designed for polarization diversity. Its circumference is almost 10 times that of a conventional small loop antenna whose circumference is less than ${\lambda}/10$ but its the radiation pattern is omni-directional. An identical parasitic element is placed over the radiator to match the antenna input impedance. An equivalent transmission line and RLC circuit models are shown to fully describe for the windmill-shaped loop antenna. The proposed antenna has a bandwidth of 6 % with input VSWR less than 2:1 and a polarization purity of 15 dB at 2.6 GHz, and the gain of 1.5 dBi. The simulated and measured results show fairly good agreement.

Performance Analysis of HDR-WPAN System Using Multiple Antenna Scheme (다중 안테나 방식을 적용한 HDR-WPAN 시스템의 성능분석)

  • Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1037-1040
    • /
    • 2005
  • In this paper, we analyze the performance of high data rate wireless personal area network (HDR-WPAN) system using multiple antenna scheme, space-time block code in fading channel. Multiple antenna technique is used to improve the error performance by combining the receive signal through multiple receive antenna. Space-time block code is a space-time diversity scheme which can obtain the maximum space diversity gain and easily implements a ML receiver via a simple process. HDR-WPAN system using space-time block code obtain about 14dB diversity gaint at BER 10$^{-5}$ in multipath fading channel. From the simulation result, We confirm that HDR-WPAN system adopting space-time block code has reliable communication even low power.

  • PDF

A Golden Coded-Spatial Modulation MIMO System (골든 부호 기반의 공간 변조 다중 안테나 시스템)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, the spatial modulation (SM) multi-input multi-output (MIMO) system is proposed for indoor wireless local area networks (WLANs) with improved spectral efficiency. SM is suitable for high speed WLANs with avoiding the inter channel interference (ICI). Only one transmit antenna is activated in SM at each symbol interval. Therefore, it fails to attain the maximum coding gain of MIMO. The space time block code (STBC)-SM MIMO system can attain the maximum diversity gain at the expense of spectral efficiency. The proposed Golden-SM MIMO system uses the Golden code to improve the coding gain and spectral efficiency at the same time. The Golden code is adapted for STBC-SM and it makes the new code book for transmission symbols. The performance of the proposed system is compared with the conventional systems with computer simulations.