• Title/Summary/Keyword: Disturbance input

Search Result 472, Processing Time 0.028 seconds

Position control of D.C. motor under the disturbances by new sliding mode control

  • Lee, Ju-Jang;Kim, Jong-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.843-847
    • /
    • 1988
  • A new control method for position control of D.C. servo motor based on the variable structure control is presented. The desired trajectory satisfying the given performance requirement is used as the sliding curve. And the control input forcing the system to follow the desired model system is applied. As a result the method is robust to disturbance. The performance of the proposed controller is compared with that of the conventional state feedback controller through digital computer simulation.

  • PDF

다축 공작기계의 위치정밀도 향상을 위한 추적제어기 설계

  • 서정환;양호석;이천환;이승욱;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.192-197
    • /
    • 1992
  • The position error in multi-axis machine tools are due to many elements, such as the static friction, servo lag, a nonlinear disturbance, the gain mismatch between multi-axis controllers. In the work, modeling for the plant was carried out through the velocity response by the step input signal. Digital PI controllers, LQ optimal controllers and feedforward controllers are designed for a high tracking performance based on the model. The results of experimentation showed that the controllers worked properly.

비선형 다변수 발사대의 LQG/LTR 제어기 설계

  • 김종식;한성익;김용목;남세규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.133-142
    • /
    • 1992
  • A kineamatic nonlinear multivariable laundher is modeled of which the azimoth and elevation axes are drived simultaneously and SISO and MIMO LQG/LTR controllers are designed and evaluated for this system. Also, the suitable command input function is suggested for the desired command following performance and the LQG/LTR control system with disturbances and load variation is evaluated for the entire operating range by computer simulation. It is found that the linear SISO LQG/LTR controller can be used for the kinematic nonlinear multivariable launder in the entire operating range and is effective for disturbance rejection and load variation.

Fuzzy-Sliding Mode C.ontrol for Chattering Reduction (채터링 감소를 위한 퍼지 슬라이딩 모드 제어)

  • 이태경;문지운;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.72-72
    • /
    • 2000
  • This paper presents a methodology combining sliding mode control and fuzzy control to tune the boundary layer and input gain according to the system state. The equivalent control is designed such that the nominal system exhibits desirable dynamics, The robust control with fuzzy self-tuning is then developed to guarantee the reaching condition and reduce chattering phenomenon in the presence of parameter and disturbance uncertainties.

  • PDF

Controller Design of the Series Resonant Converter for Reducing Output Voltage Ripple (출력 전압 맥동감소를 위한 직렬공진형 변환기의 제어기 설계)

  • 김만고;한재원;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.6
    • /
    • pp.376-382
    • /
    • 1988
  • A small-signal low-frequency disturbance of the input line affects the regulated-output voltage of the series resonant converter. To mitigate the detrimental effect, the output feedback PI-controller is employed. Small-signal linear models are represented to characterize the closed loop series resonant converter system. Design equations for the PI-controller which satisfy stability and percent ripple conditions are derived from the closed-loop linear model. Experimental results are presented which show excellent correlation with theory.

  • PDF

A Robust Discrete-Time Model Reference Adaptive Control in the Presence of Bounded Disturbances (제한된 외란하에서의 강인한 이산 시간 모델 추종 적응 제어)

  • 이호진;함운철;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1618-1624
    • /
    • 1988
  • In this paper, a robust discrete model reference adaptive controller is proposed using a generalized model reference adaptive algorithm for single-input single-output discrete systems. A signal dependent time-varying dead-zone is employed in a generalized adaptive control structure. This adaptive controller is shown to assure the boundedness of the signals of the system even in the presence of bounded external disturbance.

  • PDF

Input-Output Feedback Linearizing Control With Parameter Estimation Based On A Reduced Design Model

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.87.2-87
    • /
    • 2001
  • By the state transformation including independent outputs functions, a nonlinear process model can be decomposed into two subsystems; the one(design model) is described in output variables as new states and used for control system synthesis and the other(disturbance model) is described in the original unavailable states and its couplings with the design model are treated as uncertain time-varying parameters in the design model. Its existence with respect to the design model is ignored. So, the design model is an uncertain time-variant system. Control synthesis based on a reduced design model is a combined ...

  • PDF

Robust H\ulcorner Control for Delayed System with Time-Varying Norm-Bounded Parameter Uncertainty

  • Kim, Jong-Hae;Jeung, Eun-Tae;Park, Hong-Bea
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.33-38
    • /
    • 1996
  • In this paper, we present a robust H\ulcorner control design method for parameter uncertain systems that have delay in both state and control input. Through a certain algebraic Riccati inequality approach, a state feedback controller is obtained. The proposed state feedback controller stabilizes parameter uncertain delay systems and guarantees disturbance attenuation within a prescribed level. An illustrative example is given to demonstrate the results of the proposed method.

  • PDF

A Study on Control for the Two-Rotor System Using Inertial Sensors (관성 센서를 이용한 투로터 시스템 제어에 관한 연구)

  • Jang, Jae Hoon;Jeung, Eun Tae;Kwon, Sung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.190-194
    • /
    • 2013
  • This paper presents experimental results of the attitude control for a two-rotor system with 3-DOF(degree-of-freedom). Two DC motors are equipped at the two ends of a rectangular beam to generate lift force and the relation between motor voltage and lift force is found experimentally. And inertial sensors are mounted at the center of the beam to measure the roll angle and a complementary filter is designed to get the angle during DC motors driving. A controller with nonlinear compensation, integrator and state feedback to achieve asymptotic tracking for a step input and reject input disturbance is designed and experimented.

Control of a Rotary Inverted Pendulum System Using Brain Emotional Learning Based Intelligent Controller (BELBIC을 이용한 Rotary Inverted Pendulum 제어)

  • Kim, Jae-Won;Oh, Chae-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.837-844
    • /
    • 2013
  • This study performs erection of a pendulum hanging at a free end of an arm by rotating the arm to the upright position. A mathematical model of a rotary inverted pendulum system (RIPS) is derived. A brain emotional learning based intelligent controller (BELBIC) is designed and used as a controller for swinging up and balancing the pendulum of the RIPS. In simulations performed in the study, a pendulum is initially inclined at $45^{\circ}$ with respect to the upright position. A simulation is also performed for evaluating the adaptiveness of the designed BELBIC in the case of system variation. In addition, a simulation is performed for evaluating the robustness of the designed BELBIC against a disturbance in the control input.