• Title/Summary/Keyword: Disturbance Force Observer

Search Result 81, Processing Time 0.027 seconds

A Study of Adhesive Effect Estimation using Anti-slip Control Algorithm (Anti-slip 제어 알고리즘을 이용한 접착력 추정에 관한 연구)

  • Kim Gil-Dong;Ahn Tae-Ki;Lee Woo-Dong;Lee Ho-Yong;Park Seo-Young
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.626-631
    • /
    • 2004
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

A Method of Accurate Position Control with a Pneumatic Cylinder Driving Apparatus

  • Jang Ji-Seong;Byun Jung-Hoan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.993-1001
    • /
    • 2006
  • In this paper, a method of accurate position control using a pneumatic cylinder driving apparatus is presented. To overcome the effect of friction force and transmission line, low friction type cylinder applied externally pressurized air bearing structure is used and two control valves attached both side of the cylinder directly. To compensate nonlinear characteristics of control valves, linearized control input derived from the relation between control input and effective area of control valve, and dither signal are applied to the valve. The controller applied to the pneumatic cylinder driving apparatus is composed of a state feedback controller and a disturbance observer. Experimental results show that the effectiveness of the proposed method and position control error of $5{\mu}m$ accuracy could be obtained easily.

Robust Impedance Control of Robot Manipulator Considering Time Delay (시간 지연을 고려한 로봇 매니퓰레이터의 강인한 임피던스 제어)

  • Kim, Jaehun;Hyunseok Shin;Park, Chang-Woo;Park, Mignon
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.39-42
    • /
    • 2000
  • In this paper we design the robust impedance controller of the robot manipulator with time delay. The designed controller considers time delay in the position loop and stabilizes the closed-loop system. The performance of a controller can be easily degraded by external disturbances. To improve the performance when external disturbances exist, we use the disturbance observer to handle the disturbances in the velocity loop and provide robustness to the control system. To show the validity of the designed controller, several experiments are performed for the 5-DOF robot manipulator equipped with the wrist force/torque sensor system.

  • PDF

Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle (철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Robust Discrete-Time Impedance Control of Robot Manipulator with Time Delay

  • Kim, Jaehun;Hyunseok Shin;Park, Chang-Woo;Park, Mignon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.604-607
    • /
    • 2000
  • In this paper we design the robust impedance controller of the robot manipulator with time delay. The designed controller considers time delay in the position loop and stabilizes the closed-loop system. The performance of a controller can be easily degraded by external disturbances. To improve the performance when external disturbances exist, we use the disturbance observer to handle the disturbances in the velocity loop and provide robustness to the control system. To show the validity of the designed controller, several experiments are performed for the 5-DOF robot manipulator equipped with the wrist force/torque sensor system.

  • PDF

High-Performance Tracking Controller Design for Rotary Motion Control System (회전운동 제어시스템을 위한 고성능 추적제어기의 설계)

  • Kim, Youngduk;Park, Su Hyeon;Ryu, Seonghyun;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.43-51
    • /
    • 2021
  • A robust tracking controller design was developed for a rotary motion control system. The friction force versus the angular velocity was measured and modeled as a combination of linear and nonlinear components. By adding a model-based friction compensator to a nominal proportional-integral-derivative controller, it was possible to build a simulated control system model that agreed well with the experimental results. A zero-phase error tracking controller was selected as the feedforward tracking controller and implemented based on the estimated closed-loop transfer function. To provide robustness against external disturbances and modeling uncertainties, a disturbance observer was added in the position feedback loop. The performance improvement of the overall tracking controller structure was verified through simulations and experiments.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.

A Study on Maximum Traction Effort Control with the Adhesive Effort Estimation (점착력 추정에 의한 최대 견인력 제어에 관한 연구)

  • Jun, K.Y.;Chung, J.H.;Kim, S.N.;Lee, S.H.;Oh, B.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1000-1002
    • /
    • 2002
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Anti-Slip Control By Adhesion Effort Estimation Of Minimized Railway Vehicle (축소형 철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • Jeon K.Y.;Lee S.H.;Kang S.W.;Oh B.H.;Lee H.G.;Kim Y.J.;Han K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.536-539
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Using Closed Loop Flux Estimator The Sensorless Vector Control Of Induction Motor (폐루프 자속추정기를 이용한 철도차량의 유도 전동기 센서리스 벡터제어)

  • Jang, Jin-Hyog;Hwang, Lak-Hun;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1092-1099
    • /
    • 2006
  • Displayed system equationally using accurate dynamic modeling of whole system including induction motor and load to analyze induction motor to normal condiction's action characteristic as well as transient characteristic using power converter device such as inverter in this paper. Also, presume adhesive power calculation through speed sensorless vector control and load torque disturbance observer for maximum tractive force control. Confirmed proposed algorithm through simulation and an experiment using railroad experiment equipment to embody control algorithm of such system. With relation of adhesive power about the wage speed by speed addition and subtraction of railway vehicle, embodied all sorts item by experiment equipment.

  • PDF