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Abstract: In this paper we design the robust impedance
controller of the robot manipulator with time delay. The
designed controller considers time delay in the position
loop and stabilizes the closed-loop system. The
performance of a controller can be easily degraded by
external disturbances. To improve the performance when
external disturbances exist, we use the disturbance
observer to handle the disturbances in the velocity loop and
provide robustness to the control system. To show the
validity of the designed controller, several experiments are
performed for the 5-DOF robot manipulator equipped with
the wrist force/torque sensor system.

1. Introduction

It is desirable to have robot manipulator behave in a
controlled compliant manner when performing tasks which
require contact with the environment. The two main
approaches to the force control problem may be broadly
classified as hybrid position/force control, and impedance
control. Hybrid position/force control[1] splits the task
space into two orthogonal subspaces. Position is controlled
along those directions in which it is impossible to apply an
arbitrary force. Force is controlled along those directions in
which arbitrary motion is not possible. Impedance
control[2] is a generalized force/position control approach
to unconstrained motion control and constrained
manipulation. The objective of impedance control is to
regulate the mechanical impedance of the robot
manipulator that relates both position and force rather than
directly controlling force or position. This ensures that a
user specified dynamic relationship between the robot
manipulator end-point position, and the robot manipulator
environmental contact force can be achieved.

Since the impedance controller of a robot
manipulator is often implemented by a digital computer,
the sampling frequency affects the stability characteristics
of a robot manipulator. In general, a robot manipulator gets
the sensory information such as force signal through RS-
232C serial communication channel and it takes about
20msec for most of force sensor system to send the
measured force with 19200 bps(bit per second). Thus, in
case of the robot manipulator with this force sensor system,
a sampling frequency cannot be arbitrarily made high. It is
noticed that the digital system with time delay can go
unstable in the low sampling frequency[3, 4].

External disturbances usually exist in real control
situations and can degrade the performance of a controller.
Recently, the disturbance observer has been applied to
many systems in order to realize fast and accurate
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Fig. 2-1 Controller with time delay Fig. 2-2 Designed controller

control[5, 6].

In this paper, we design the impedance controller
stabilizing the robot manipulator with time delay. Also, in
order to provide robustness to the control system we use
the disturbance observer.

2. Controller with Unit Time Delay

To investigate the problem caused by time delay, consider a
discrete-time system.
x(k +1) = Ax(k) + Bu(k) @-1)
y(k) = x(k)
If time delay is 7 in a controller, an ideal controller
becomes
(kT + 7) = Fx(kT) (2-2)
Fig. 2-1 shows that the system has oscillation when time
delay is a half of the sampling time. We used
A=eT B=1-¢7,a=0.3,T =0.2 in the simulation. In
this paper, we design the discrete-time controller to
consider time delay in the control loop.
u(k +1) = Du(k) + Ex(k) 2-3)

The ideal controller has time delay in real
implementation. Since the output of the controller with
time delay is not synchronized with the sampling time, it is
difficult to design and analyze the controller.

On the contrary, since the output of the designed
controller is synchronized with the next sampling time, it is
relatively easy to design and analyze the controller. The
closed-loop system is

[x(k + 1)] _ [A B}[x(k)} (24)
u(k+1) E Djjuk)
If we define a new state as w(k) = [x(k) u(k)}r, then
w(k +1) = Aw(k) + Bv(k) (2-5)
v(k) = -Fw(k) (2-6)
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Fig. 3-1 Impedance control

— |A B|l= [0|=
where Az[0 0}B=[J,F=—[E D]. Therefore we

can determine the gains of the designed controller from Eq.
(2-5) and (2-6). Fig. 2-2 shows that the designed controller
stabilizes the system without oscillation.

3. Discrete-Time Impedance Control

The desired dynamic relation between the actual position
xeR"”, the pre-assigned

reference position x, € R”, and the contact force exerted

of the robot manipulator

by the robot manipulator on the environment FeR" can
be defined as
MX+BX+KX=F 3-1)
X=x,-x;MeR"”” BeR™" KeR™" are
inertia, damping and stiffness matrixes respectively. After
defining the dynamics relation between the robot
manipulator and the environment the objective is to
generate the desired dynamics trajectory, X, that satisfies
the dynamics Eq. (3-1). The solution to this problem is
obtained by solving the differential equation
Mx, (1) +Bx, () +Kx, () =
—F(@)+Mx, (1) +Bx, (1) +Kx,.(r)
x4(0) =x,(0),%X,4(0) = X, (0).
absence of contact force F,
X, (N=x,@), Vi (3-3)
the robot manipulator simply tracks the pre-assigned
trajectory x,; otherwise, it tracks the generated desired

where

(3-2)

where Clearly, in the

dynamics trajectory x,.

In order to design the discrete-time impedance
controller, a discrete-time representation of Eq. (3-1) is
required. Assuming the sampling time is 7,, a discrete-
time equivalence of Eq. (3-1) is the difference equation

MX(k-2)+BX(k-1D)+KX(k)=Fk) (3-4)
M & 2M+TB M+T,B+T’K
¢ e e

The computation of the discrete-time solution to Eq.

(3-2) is straightforward

xy (k) = - K 'F(k) + K 'M{x, (k - 2) - x4 (k - 2)} o5
+ KB, (k—1) - x4(k - 1)} +x,(k)

The Impedance control system configuration is sown in
Fig. 3-1.

where M =

)

Fig. 4-1 Impedance control using SLC method

4. Design of Impedance Controller

In this paper, we use the 5-DOF robot manipulator that
each joint of the robot manipulator is driven by DC servo
motor.

4.1 Controller in Velocity Loop

In general, several sensors are used in a robot manipulator
and we choose the multi-rate digital control techniques.
Also, since the successive loop closures (SLC) method, one
of the multi-rate sampling techniques, is often used in
position control of servo motor, we use it in this paper. Fig.
4-1 shows the impedance controller using SLC method.

4.1.1 PI Controller
The function of PI controller is to compute u, which is the

input in the current feedback loop, from the velocity input
®,, which is also the output in the position feedback loop.

The pulse transfer function is represented by
1
U@ _gr, K
Q,(z) 1-z

where K’ isP-gainand K’ is I-gain.

(-1)

4.1.2 Disturbance Observer (DOB)
In this paper, we use the disturbance observer in the
velocity control loop. The disturbance observer was
proposed to estimate and cancel out the external
disturbances using the high gain characteristics of the
robust controller. The estimated disturbance is immediately
supplied to the servo system, so that the servo system is not
affected by the disturbance. Its basic concept is shown in
Fig. 4-2.

To understand how the disturbance observer works,
first let O(s)=1 in Fig. 4-2. Then it can be easily verified

that
P’ 1
5=d= 1——" U+ — V+d 4-2
[ Pv} L @2

where P¥ is the actual plant transfer function for the
velocity output, P, is the nominal transfer furnction, d
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Fig. 4-3 Disturbance observer structure for digital implementation

G,

is the external disturbance, d represents the estimate of
d, u is the external input to the velocity loop and &, is

the measurement noise. The velocity output is then
expressed as

v=P'(u-d+d)=Pu-¢, 4-3)
Notice that the input-output relation between » and v is

characterized by the nominal model.
The disturbance observer cannot be implemented if

Q(s)=1. Notice that 1/ P;(s) is not realizable by itself
but that ((s)/ P, (s) can be made realizable by letting th
relative degree of ((s) be equal to or greater than that of
P)(s). Furthermore, Q(s) may attenuate the effect of

measurement noise appearing in (4-2) and (4-3).
From the block diagram in Fig. 4-2, v is expressed

as
V= Guv (s)u + de (S)d + G§vv (s)év (4'4)
where
FRSE 1, @-5)
B+ (P"-P))Q
P'P/(1-0Q)
s a7 4-6
dv P (PP (4-6)
P'Q
G,,=— i 4-7
&y an+(Pv _an)Q ( )

If O(s)=1, the three transfer functions in Eq. (4-4) are
G,, = P,,G4 =0,G; , ~—1 and the relation in Eq. (4-2)

approximately holds. This implies that the disturbance
observer makes the actual plant behave like a nominal
plant, and this provides robustness to the control system.
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Fig. 4-4 Timing diagram in the position loop

On the other hand, if O(s) = 0, the three transfer functions
are G, ~P",Gs ~P"',G;,~0 and the open loop
dynamics is observed. Therefore, a sensible choice is to let
the low frequency dynamics of Q(s) close to 1 for
disturbance rejection and model uncertainties. The high

frequency dynamics must be close to 0 anyway because the
relative degree of (Q(s) must be equal or greater than that
of P)(s).
consideration in selection of Q(s).

A third order binomial filter which satisfies above
stated properties has been chosen in this paper

() +1
0(s) = —5—B)

() +3(m)” +3(w5) +1

The disturbance observer can be implemented
digitally in several ways. Experimental results in Section 5
were obtained by transforming it into the structure shown
in Fig. 4-3 and by applying bilinear transformation to
G,(s) and G,(s) to convert them into digital filters.

Sensor noise rejection may be another

(4-8)

4.2 Controller in Position Loop

4.2.1 Time Delay in Position Loop
The function of the position control loop is to compute
@4, which is the input in the velocity feedback loop, from

the position input q,, which is derived through force

sensor and impedance dynamics. We design the position
controller to consider time delay in the control loop. Fig. 4-
4 shows the timing diagram in the position loop.

From the figure, if the sampling time is 7, it takes

r to send the output of the controller to robot
manipulator. It is complex to design and analyze the
closed-loop system because time delay of the system () is

not unit time delay (7,,). In contrary, since the output of the

designed controller in this paper is synchronized with the
next sampling time, (k+1)T,, it is relatively easy to

design and analyze the controller.

4.2.2 PD Controller
The pulse transfer function of PD controller is represented

by

(k? +kPyz- kP
2

Qu(2) = 2.2 (49
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Fig. 5-1 System configuration for experiment

where K’ is P-gain and K D"is D-gain. The software
implementation of Eq. (4-9) is

w4k +1)=K"q, (k) + K" {g,(k) - g, (k - D} (4-10)
It is noticed that Eq. (4-9) and (4-10) contain the unit time
delay.

5. Experiments

In this section, we show the performance of the designed
controller by two kinds of experiments: non-constrained
motion control and constrained motion control. The
impedance parameters for control of the end-effector are
given by

M =125[N/ms?],B =11180[N/ms™],K =2500[N/m]
Fig. 5-1 shows the system configuration for experiment.

Case I : Non-constrained Motion Control

The primary task is to track a line segment in Cartesian
space from (x, y) = (0.0, 400.0) [mm] to (x, y) = (120.0,
500.0) [mm]. Fig. 5-2 and 5-3 show the experimental
results that are Cartesian position error of the control
scheme without DOB and that with DOB. As shown in
these figures, we can observe that the robot manipulator
shows superior performance at steady-state when DOB is
employed.

Case II : Constrained Motion Control

The end-effector commanded to track a line segment from
z = 162.0 [mm] to z = 62.0 [mm] during 5 seconds and to
maintain the final position. Fig. 5-4 and 5-5 show the
experimental results. We also compare the control scheme
with DOB to that with DOB. The contact force is shown in
Fig. 5-4 and the position error is shown in Fig. 5-5. In this
experiment, we know that when the disturbance observer is
used, the desired impedance relation can be achieved more
accurately. As shown in Fig. 5-5, the position error to z-
axis increases rapidly due to the contact with environment
after 5 second.

6. Conclusion

The discrete-time controller which considers time delay in
the control loop and stabilizes the closed-loop system was
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Fig. 5-2 Position error (x-axis) Fig. 5-3 Position error (y-axis)
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Fig. 5-4 Contact force Fig. 5-5 Position error (z-axis)
designed. Also, the designed controller was applied to
impedance control of a robot manipulator. To reduce the
disturbance effects on the system performance, the
disturbance observer was used to improve the performance
of the system. The performance of the controller using the
disturbance observer has been examined through
experiments.
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