• Title/Summary/Keyword: District heating

Search Result 437, Processing Time 0.025 seconds

Seismic response characteristics according to the supporting conditions of middle slab of double-deck undersea tunnel using the centrifuge testing (원심모형 실험을 이용한 해저 복층터널 중간슬래브 지지조건에 따른 지진 응답특성)

  • Um, Ki-Yoon;Park, Inn-Joon;Kwak, Chang-Won;Jang, Dong-In
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.347-360
    • /
    • 2018
  • Due to the concentration and congestion of traffic in Seoul metropolitan area, effective utilization of underground space is required, and construction of various underground structures such as a double deck tunnel is increasing. Double deck tunnels are divided into upper and lower runways, and the most important part is middle slab. To investigate seismic behavior of middle slab, experimental study is required because of the complexity of the load and the mechanism of earthquake. In this study, centrifugal model tests were conducted to investigate the response characteristics of earthquake response according to the support conditions of the middle slab of a double deck tunnel. Artificial, Ofunato (short period) and Hachinohe (long period) seismic waves were employed in the experimental study. As a result, it was confirmed that the acceleration attenuation of elastomeric bearings condition was 10.6% in artificial earthquake, 13.6% in Ofunato earthquake, and 10.3% in Hachinohe earthquake. The results indicate that elastomeric bearings have some advantages in the viewpoint of seismic behaviors.

Study on flexible segment efficiency for seismic performance improvement of subsea tunnel (해저터널 내진성능 향상을 위한 Flexible segment 효용성 연구)

  • Jang, Dong-In;Kim, Jong-Ill;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.503-515
    • /
    • 2017
  • Underground structures that have recently become larger are required to be stable not only during normal times but also during earthquakes. Especially, it is very important to maintain the stability of the subsea tunnels during the earthquake. The objective of this paper is to verify the effectiveness of the flexible segment, which is one of the breakthrough facilities to maintain the stability of the subsea tunnel during the earthquake using the shaking table test. Another goal of this paper is to propose the optimum position of the flexible segment through 3D dynamic numerical analysis based on the verified results from shaking table tests. The 1g shaking table test considering the similarity ratio (1:100) to the cross section of the selected artificial subsea tunnel was carried out considering the Geongju and Artificial seismic waves, longitudinal and lateral wave, and with/without flexible segments eight times or more. As a result of the shaking table test, it was confirmed that the flexible segment is effective in improving the seismic performance of the undersea tunnel in all the experimental results. In addition, 3D dynamic numerical analysis was performed to select the optimum position of the flexible segment which is effective for improving seismic performance. As a result, it was confirmed that the seismic acceleration is attenuated when the flexible segment is installed adjacent to the branch section in subsea tunnel.

Development of Pozzolanic material from clay

  • Alaskar, Abdulaziz;Shah, S.N.R.;Keerio, Manthar Ali;Phulpoto, Javed Ali;Baharom, Shahrizan;Assilzadeh, Hamid;Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.301-310
    • /
    • 2020
  • The following paper concentrates on the objective of studying the influences of extent of duration and temperature on the Pozzolanic properties as well as reactivity of locally existing natural clay of Nai Gaj, district Dadu, Sindh Pakistan. The activation of the clay only occurs through heating when temperature in a furnace chamber reaches 600, 700 and 800oC for 1, 2 and 3 hours and at 900 and 1000℃ for 1 and 2 hours. Furthermore, the strength activity index (SAI) of advanced pozzolanic material happens to be identified through 20% cement replacement for different samples of calcined clay as per ASTM C-618. The compressive strength test of samples had been operated for 7 and 28-days curing afterwards. The maximum compressive strength had been seen in mix E in which cement was replaced with clay calcined at 700℃ for 1 hour that is 27.05 MPa that is 24.31% more than that of control mix. The results gathered from the SAI verdicts the optimal activation temperature is 700℃ within a one-hour time period. The SAI at a temperature of 700℃ with a one-hour duration at 28 days is 124.31% which happens to satisfy the requirements of the new Pozzolanic material, in order to be applied in mortar/concrete (i.e., 75%). The Energy- dispersive spectrometry (EDS) along with the X-ray diffraction (XRD) have been carried out in means of verifying whether there is silica content or amorphous silica present in metakaolin that has been developed. The findings gathered from the SAI were validated, as the analysis of XRD verified that there is in fact Pozzolanic activity of developed metakaolin. Additionally, based on observation, the activated metakaolin holds a significant influence on the increase in mortar's compressive strength.

Dynamic shear behavior of geosynthetic-soil interface considering thermalchemical factors (열-화학적 인자를 고려한 복층터널의 지반-토목섬유의 접촉면 전단거동)

  • Jang, Dong-In;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • The needs for the utilization of space in the urban ara due to the increasing population and traffic volume. A Double-deck tunnel can be an appropriate solution. Geosynthetics are inevitably installed between ground and tunnel lining, therefore, geosynthetic-soil interface is also comprises. Dynamic shear behavior of geosynthetic-soil interface affects the dynamic behavior of tunnel, and experimental study is required since the behavior is very complicated. In this study, chemical factors such as acid and basic element in the groundwater and temperature are considered in the laboratory test. Multi-purpose Interface Apparatus(M-PIA) is utilized and submerging periods are 60 and 960 days. Consequently, dynamic shear degradation of geosynthetic-soil interface considering chemical and thermal factors are verified.

STUDY ON PROCESSING AND UTILIZATION OF CULTURED UNDARIA PINNETIFIDA 1. Effect of Heat Treatment on the Storage Life of Dry Salted Undaria pinnatifida (양식미역의 이용가공에 관한 연구 1. 열처리방법에 따른 염장미역의 보장효과)

  • KANG Sung-Koo;KIM Woo-Jun;KANG Tae-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 1976
  • To examine the storage effect of the dry cured cultured undaria pinnetifida, its components were researched according to different places and periods of production and in heat treatment of it, how the different time, temperature and salt concentration can effect on its storage was researched as follows. In Pohang and Yeosu districts the most suitable period of processing was around the end of December and in Wando district, around the end of January. When it was heat-treated separately at $90^{\circ}C\;and\;100^{\circ}C$ there of occurred the comparative low increase of organic acids and volatile acids, and the slight decrease of pigment. When it was heat-treated in sea water and satuarated NaCl solution, the obvious change was not found in all components, and in fresh water organic acids and volatile acids were conspicuously increased. When it was heat-treated according to the different heating time (long or short), there was no remarkable change in all components, but when heat-treated for 20 sec. the decrease of carotenoid was conspicuous. When heat-treated for 40 sec. separately at $90^{\circ}C\;and\;100^{\circ}C$ in sea water, better effect for storage was resulted.

  • PDF

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis (확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석)

  • Park, Dohyun;Kim, Hyunwoo;Park, Jung-Wook;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

The Effect of korean, Chinese and American Ginseng on Blood Pressure of Hypertensive Patients (한국삼, 중국삼, 서양삼이 고혈압 환자의 혈압에 미치는 영향)

  • Lee Cha-ro;Lee Sang-Ho;Rhee Jun-Woo;Na Byong-Jo;Kim Tae-Hun;Jung Woo-Sang;Moon Sang-Ho;Cho Ki-Ho;Bae Hyung-Sup;Kim Young-Suk
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.228-238
    • /
    • 2005
  • Objectives : We conducted a randomized, double-blinded clinical trial to assess the anti-hypertensive effect of Ginseng and to know the difference of the effect according to it's growing districts md species by 24-hour ambulatory blood pressure measurement (ABPM). Methods : We allocated 96 hypertensive patients enrolled in this trial to Korean ginseng(KG), American ginseng (AG), Chinese ginseng (CG), and Korean red ginseng (KRG) groups by randomization. Each subject was administered 4.5mg/day of encapsulated ginseng for 4 weeks. We assessed anti-hypertensive effect, blood pressure variability using ABPM and toxicity by blood chemistry before and after treatment. We also evaluated changes of symptoms due to hypertension and adverse effect in all groups at the first visit, 2 weeks later and 4 weeks later. Results : Blood pressure after treatments showed significant decrease of systolic blood pressure (sBP) in the CG-group (p<0,05) and diastolic blood pressure (dBP) in the KRG-group (p<0.05). However, there were no significant changes of sBP (or dBP) after treatment in the other groups and no significant difference in changes of BP between before and after treatment among the 4 groups. Blood pressure variability in the CG-group showed significant decrease after treatment but not in the KRG-group. Symptoms such as headache or neck stiffness and heating sensation due to hypertension improved significantly in all groups, especially in the KRG-group. A3l patients had no adverse effect after treatment and there was no liver or kidney toxicity. Conclusions : CG and KRG seem to have anti-hypertensive effects, but there was no significantly different effect depending on growing district and species of Ginseng.

  • PDF

Greenhouse Gas Reduction Effect of Improvement of Existing Landfill Gas(LFG) Production by Using Food Waste Water (음폐수 이용 기존 매립지 가스 발생 향상에 따른 온실가스 감축효과)

  • Shin, Kyounga;Dong, Jongin;Park, Daewon;Kim, Jaehyung;Chang, Wonsoek
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.104-113
    • /
    • 2016
  • This study analyzes correlation between methane gas production and injection of food waste water to motivate to expand renewable energy as a way of GHG (Green House Gas) mitigation to achieve the national GHG target proposed for the climate agreement in Paris last year. Pretreatment of food waste water was processed with pH 6 at $35^{\circ}C$ and used the fixed-bed upflow type reactor with the porous media. As a result of operation of pilot-scaled bioreactor with food waste water, the methane gas production was 6 times higher than the methane gas production of control group with rain water. The average production of methane was $56{\ell}/day/m^3$ which is possible to produce $20m^3$ of methane in $1m^3$ of landfill. As a way of energy source, when it is applied to the landfill over $250,000m^3$, it is also able to achieve financial feasibility along with GHG reduction effect. GHG reductions of $250,000m^3$ scale landfill were assessed by registered CDM project and the annual amount of reductions was 40,000~50,000 $tCO_2e$.

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

Dynamic Relative Displacement of Geosynthetic-Soil Interface Considering Chemical Effect (화학적 영향을 고려한 토목섬유-지반 접촉면의 동적상대변위)

  • Kwak, Chang-Won;Oh, Myoung-Hak;Jang, Dong-In;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • Recently, the construction of onshore waste landfill sites has been studied due to the increase of waste and geosynthetics are widely utilized to enforce and protect waste landfill. Geosynthetics comprises the interface with soil and the seismic behavior and stability mostly depend on the dynamic shear behavior of the geosynthetic-soil interface. Therefore, the understanding of dynamic shear behavior and dynamic relative displacement of the interface is critical. The dynamic shear behavior of the interface is affected by surrounding conditions and loading and shows very complicated response, and, it is difficult to study theoretically. In this study, laboratory test to investigate dynamic relative displacement is performed under chemical condition. Dynamic interface apparatus is utilized and cyclic simple shear tests are conducted under short term (60 days of submerging period) and long term (840 days of submerging period) conditions. Consequently, relative displacement of the interface shows the largest values under acid condition, which means more severe damage of the interface.