• 제목/요약/키워드: Distribution power system planning

검색결과 91건 처리시간 0.023초

전산 시스템을 이용한 배전계획 연구 - CADPAD를 이용한 배전계획 - (A Study on the Distribution Planning using Computer Systems)

  • 황수천;문병화;홍순학;장정태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.205-207
    • /
    • 1993
  • Distribution planning requires comprehensive knowledge about not only distribution but also transmission/subtransmission system expansion plan. At the same time, distribution planning is very time consuming and a series of routine job which involves a lot of experience and efforts of planning engineers. Since the quality of distribution planning depends upon the ability of planning engineers, the economy of investment should be taken into consideration. The object of this study is to establish a computerized distribution planning system which helps distribution engineers finding a new system expansion plan. It provides the engineers with at optimal system expansion plan which satisfies the condition of both reliability and economy.

  • PDF

배전계획 시스템(DISPLAN) 및 배전계통 운영계획 시스템(DLPLAN)의 개발 (The Development of Distribution Planning System and Distribution Line Planning System)

  • 채우규;박창호;정종만;정영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.73-75
    • /
    • 2004
  • This paper presents the ability and the application of software packages for distribution planning which are DISPLAN(Distribution Planning System) and DLPLAN(Distribution Line Planning System) developed in KEPCO. After calculating size and position of maximum load by administration section for distribution, it forecasts the demand of distribution load considering growth location, increment, new load plan, etc of load by annual. Also it calculates distribution loss, voltage drop using modeled distribution line by you, and support for establishment and enlargement plan of substation and distribution line, decision of most optimal path. And it presents the abstract of used algorithm to develop this system.

  • PDF

한전 배전계획시스템을 위한 부하예측 알고리즘 개발 (Development of Distribution Load forecasting Algorithm for Distribution Planning System in KEPCO)

  • 권성철;박창호;오재형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.199-201
    • /
    • 2004
  • KEPCO, has been made a lot of efforts for computerization for distribution planning system since 1980's, And as a results, DISPLAN (Distribution PLANning System) for systematic and effective planning was developed in 2003 and is being used for feeder and substation planning of KEPCO branch office. In this paper the distribution load forecasting algorithm in DISPLAN is represented and the application was showed.

  • PDF

Active Distribution Network Expansion Planning Considering Distributed Generation Integration and Network Reconfiguration

  • Xing, Haijun;Hong, Shaoyun;Sun, Xin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.540-549
    • /
    • 2018
  • This paper proposes the method of active distribution network expansion planning considering distributed generation integration and distribution network reconfiguration. The distribution network reconfiguration is taken as the expansion planning alternative with zero investment cost of the branches. During the process of the reconfiguration in expansion planning, all the branches are taken as the alternative branches. The objective is to minimize the total costs of the distribution network in the planning period. The expansion alternatives such as active management, new lines, new substations, substation expansion and Distributed Generation (DG) installation are considered. Distribution network reconfiguration is a complex mixed-integer nonlinear programming problem, with integration of DGs and active managements, the active distribution network expansion planning considering distribution network reconfiguration becomes much more complex. This paper converts the dual-level expansion model to Second-Order Cone Programming (SOCP) model, which can be solved with commercial solver GUROBI. The proposed model and method are tested on the modified IEEE 33-bus system and Portugal 54-bus system.

휴리스틱 탐색전략을 이용한 배전계통 계획의 급전선 최적 경로 선정 (Optimal Feeder Routing for Distribution System Planning Using a Heuristic Strategy)

  • 최남진;김병섭;신중린
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권11호
    • /
    • pp.566-574
    • /
    • 2000
  • This paper propose a heuristic algorithm based on the Branch-Exchange (BE) method to solve Optimal feeder Routing(OFR) problem for the distribution system planning. The cost function of the OFR problem is consisted of the investment cost representing the feeder installation and the system operation cost representing the system power loss. We propose a properly designed heuristic strategy, which can handle the horizon-year expansion planning problem of power distribution network. We also used the loop selection method which can define the maximum loss reduction in the network to reduce calculation time, and proposed a new index of power loss which is designed to estimate the power loss reduction in the BE. The proposed index, can be considered with both sides, the low voltage side and voltage side branch connected with tie one. The performances of the proposed algorithms and loss index were shown with 32, 69 example bus system.

  • PDF

토지용도에 따른 부하접촉을 이용한 광주시 장단기 최적화 배전계획 (Kwangiu City Long Term Distribution Planning Process using the Land use Forecasting Method)

  • 강철원;김효상;박창호;김준오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.495-497
    • /
    • 2000
  • The KEPCO is developing the load forecasting sysetm using land use simulation method and distribution planning system. Distribution planning needs the data of presents loads, forecasted loads sub-statin, and distribution lines. Using the data, determine the sub-station and feeder lines according to the load forecasting data. This paper presents the method of formulation processfor the long term load forecasting and optimal distribution planning and optimal distribution planning. And describes the case study of long term distribution planning of Kwangju city accord to the newly applied method.

  • PDF

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

배전시스템 운영계획을 위한 신재생에너지원 발전량 예측 방법 (Renewable Power Generation Forecasting Method for Distribution System: A Review)

  • 조진태;김홍주;류호성;조영표
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.21-29
    • /
    • 2022
  • Power generated from renewable energy has continuously increased recently. As the distributed generation begins to interconnect in the distribution system, an accurate generation forecasting has become important in efficient distribution planning. This paper explained method and current state of distributed power generation forecasting models. This paper presented selecting input and output variables for the forecasting model. In addition, this paper analyzed input variables and forecasting models that can use as mid-to long-term distributed power generation forecasting.

Stochastic Integrated Generation and Transmission Planning Incorporating Electric Vehicle Deployment

  • Moon, Guk-Hyun;Kong, Seong-Bae;Joo, Sung-Kwan;Ryu, Heon-Su;Kim, Tae-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2013
  • The power industry is currently facing many challenges, due to the new environment created by the introduction of smart grid technologies. In particular, the large-scale deployment of electric vehicles (EVs) may have a significant impact on demand for electricity and, thereby, influence generation and transmission system planning. However, it is difficult to deal with uncertainties in EV charging loads using deterministic planning methods. This paper presents a two-stage stochastic decomposition method with Latin-hyper rectangle sampling (LHRS) to solve the integrated generation and transmission planning problem incorporating EV deployment. The probabilistic distribution of EV charging loads is estimated by Latin-hyper rectangle sampling (LHRS) to enhance the computational performance of the proposed method. Numerical results are presented to show the effectiveness of the proposed method.

배전계통 운영비용의 최소화에 의한 분산전원의 최적 용량과 위치결정 (Optimal Capacity and Allocation Distributed Generation by Minimization Operation Cost of Distribution System)

  • 배인수;박정훈;김진오;김규호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.481-486
    • /
    • 2004
  • In operation of distribution system, $DG_s$ Distributed Generations) are installed as an alternative of extension and establishment of substations and transmission and distribution lines according to increasing power demand. In operation planning of $DG_s$, determining optimal capacity and allocation gets economical pro(it and improves power reliability. This paper proposes determining a optimal number, size and allocation of $DG_s$ needed to minimize operation cost of distribution system. Capacity of $DG_s$ (or economical operation of distribution system estimated by the load growth and line capacity during operation planning duration, DG allocations are determined to minimize total cost with power buying cost. operation cost of DG, loss cost and outage cost using GA(Genetic Algorithm).