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1. Introduction 
 
The power industry is currently facing many challenges, 

due to the new environment created by the introduction of 
smart grid technologies. One of the challenges faced by the 
power industry is the integration of smart grid resources 
with generation and transmission planning.  

Among smart grid resources, electric vehicles (EVs) 
have been receiving increasing attention as the principal 
means of achieving the clean use of energy for 
transportation [1]. The impact of the charging of EVs and 
plug-in hybrid electric vehicles (PHEVs) on short-term 
power system operations has been analyzed in [2-7]. These 
studies have shown that the large-scale deployment of EVs 
may have an adverse influence on various aspects of a 
power system, including its reliability [3], operations [4, 5], 
and the cost of electricity [6, 7]. In particular, the reliability 
of a power system might be adversely affected if the 
charging loads of EVs exceed the capacity of existing 
power equipment [8].  

Furthermore, the large-scale deployment of EVs may 
have a significant impact on demand for electricity and, 
thereby, influence generation and transmission system 
planning. Therefore, the integration of EV deployment into 
power system planning requires a new method to 
accommodate space-time varying EV charging loads in a 
generation and transmission system planning process. 

However, most power system planning methods do not 
take EV deployment into account. Only a few studies [9, 
10] have attempted to evaluate the feasibility of PHEV 
integration into power systems.  

It is a challenging task to incorporate EV charging loads 
into generation and transmission system planning [11]. The 
integration of EV deployment into power systems would be 
challenged by greater uncertainties in the estimation of EV 
charging loads [10], because of the insufficient historical 
data regarding the estimation of the these loads. It is 
difficult to deal with uncertainties in EV charging loads 
using deterministic planning methods. Such uncertainties 
associated with EV charging loads can be handled by using 
a probabilistic approach. Moreover, the integration of EV 
deployment into the generation and transmission planning 
problem involves both probabilistic and deterministic 
variables that cannot be simultaneously determined in the 
same optimization problem [12, 13]. 

This paper presents a two-stage stochastic decom-
position method with Latin-hyper rectangle sampling 
(LHRS) to solve the integrated generation and transmission 
planning problem incorporating EV deployment. In this 
paper, the stochastic integrated generation and transmission 
planning for a power system with uncertain EV charging 
loads is formulated. The two-stage stochastic decomposition 
method [14] is applied to decompose the integrated 
optimization problem into a deterministic expansion 
problem and a stochastic operation problem. In this paper, 
a stochastic EV charging load model is also proposed to 
deal with the uncertainties involved in estimating EV 
charging loads. The probabilistic model of EV charging 
loads needs to be estimated using stochastic sampling. 
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Because of the complexity of probabilistic models of EV 
charging loads, however, the estimation of probabilistic 
distribution of EV charging loads requires a large 
computational effort with random sampling. In this paper, 
the probabilistic distribution of EV charging loads is 
estimated by LHRS [15] to reduce the computational effort 
of the proposed method. In this paper, the hourly 
chronological load curve (CLC) [16, 17] is used to study 
the effect of hourly charging patterns of EVs on the 
integrated generation and transmission planning problem. 

The remainder of the paper is organized as follows: The 
stochastic generation and transmission planning problem 
with EVs deployment is formulated in Section 2. The two-
stage stochastic generation and transmission planning 
method with LHRS is proposed in Section 3. Numerical 
results are presented to show the effectiveness of the 
proposed method in Section 4. 

 
 

2. Problem Formulation 

 

2.1 Electric vehicle charging load model 

 
In this section, the probabilistic model of the EV 

charging load is described. In references [2, 18-20], 
deterministic methods have been developed for estimating 
electric drive vehicle charging loads. The PHEV charging 
load estimation method in [2] uses transportation survey 
data and the technical parameters of PHEVs to estimate the 
scales and patterns of these loads. The PHEV charging load 
estimation methods, however, are not appropriate for the 
power planning problem because these methods have not 
considered uncertainties in the prediction of future 
conditions that may have a direct impact on investment 
decisions.  

In this study, a stochastic EV charging load model has 
been developed to evaluate the uncertainties involved in 
the prospective conditions used for estimating EV charging 
loads. The key factors influencing the scales and patterns 
of EV charging loads generally include (i) the volume of 
EVs, (ii) the daily energy consumed by EVs, and (iii) the 
hourly charging patterns of EVs [2, 20]. The proposed 
method to estimate the probabilistic EV charging load 
incorporating uncertainties in each of the prospective 
factors is described below. 

The annual volumes of EVs in future years can be 
estimated on the basis of two types of prospective factors 
[11], namely, the estimated annual number of new vehicle 
registrations and the estimated EV penetration rates. Such 
prospective factors for estimating the annual volume of 
EVs are exposed by the uncertainties in the prediction of 
future conditions. In this study, these prospective factors 
are accounted for by using stochastic variables that follow 
their own probabilistic distributions.  

The probabilistic volume of EVs in the future year y 
( yNEVω ) can be represented by the following equation: 

 , 1( ) , ,out
y y EV y y yNEV NV NEV EV yω ω ω ωρ ω−= ⋅ + − ∀ ∀  (1) 

 
where ω  is the index for the probabilistic scenario, yNVω  
is the probabilistic volume of vehicle registrations, ,EV y

ωρ  
is the probabilistic annual penetration rate of new EVs, and 

out
yEV  is the volume of EVs disposed of in the year y. 
It is anticipated in references [21, 22] that the shape of 

the annual market penetration growth rate of EVs would 
follow a “market-diffusion S-curve”. In this paper, the Bass 
diffusion model [22] is adopted to characterize the S-curve 
shape of the annual penetration growth rate of EVs, which 
can be represented by the following equation: 
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where q and r are parameters that characterize the S-curve 
shape.  

It is assumed in this study that the daily electrical energy 
charged by EVs is equal to the amount of energy it 
consumes during its daily operation. Under this assumption, 
the daily electrical energy consumed by EVs can be 
estimated using the fuel efficiency and the daily driving 
distance of the EVs. Consequently, the daily electrical 
energy consumed by EVs in the year y (

,
,
daily

y EVL
ω

) can be 
represented as follows: 
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where EVDω is the daily driving distance of the EV, and 

,EV tFEω  is the fuel efficiency of the EV for type t. 
Also, the fuel efficiency of the EV for type t can be 

calculated by using the following equation: 
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where NEVt is the number of EVs by type t; max

EVD  is the 
maximum driving distance of the EV when its battery is 
fully charged; max

EVB is the capacity of the EV battery. 
Another key consideration for estimating EV charging 

loads has been the time chosen by users to charge their 
EVs [2, 18]. If appropriate electricity price signals to 
regulate EV charging loads are provided, the best time for 
charging EVs would typically be at off-peak hours [18]. In 
this case, the integration of EV charging loads may not 
influence the peak-time loads of a power system. However, 
if appropriate EV tariff is not provided, the charging time 
would mostly be during peak hours. In order to analyze the 
impact of different charging patterns on power system 
planning, two EV charging scenarios are considered, as 
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described below. 
1) Regulated charging: In regulated charging scenario, 

EVs are assumed to start charging from midnight and 
continue charging until batteries are fully charged. 

2) Unregulated charging: In unregulated charging 
scenario, EVs are charged to full capacity as soon as 
they arrive at work from home in the morning. 
Subsequently, the vehicles are charged again to full 
capacity when they arrive at home from work in the 
evening. 

The time when EVs arrive daily at their charging 
stations can be estimated by analyzing hourly traffic 
patterns. The probabilistic distributions of the arrival time 
can be evaluated on the basis of the decrease in the traffic 
proportions on an hourly basis during the commute time. 
The charging speed of EV chargers can influence EV 
charging loads. In this research, the different charging 
speed of EV chargers is randomly selected from user-
specified probability distribution as an input for the 
probabilistic model of EV charging loads. In particular, the 
effect of charging speed is reflected in estimating the 
charging duration of an EV in Eq. (5). Then, the 
probabilistic charging ratio of EVs during the hour h 
( ,EV h

ωϕ ) can be represented by the following equation: 
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where h0 is the time when the EV starts charging, as 
determined by the EV charging scenario; hdur is the 
charging duration of the EV; hcom is the travel time to 
commute of the EV; and hEV  is the number of vehicles 
being driven on the road during the hour h. Then, the 
probabilistic EV charging load during the hour h in year y 
( ,EV yhLω ) can be estimated by the following equation: 
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In this study, the EV charging load model is estimated by 

integrating a set of factors that follow their own distribution 
function. The integrated probabilistic distributions of the EV 

charging load model can be evaluated by using kernel 
density estimation [23]. Consequently, the PDF of the 
probabilistic EV charging load during the hour h in year y 
( ,( )EV yhf Lω ) can be represented by using the following 
kernel density estimator [23]: 
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where sX , b , ( )K ⋅ , and NS  are the statistical data 
sample, the window width of statistical data, the kernel 
density function from probabilistic models, and the number 
of statistical data samples, respectively. As the procedure to 
estimate the probabilistic model of the EV charging load 
has been described, the stochastic integrated resource 
planning (IRP) optimization problem for a power system 
with uncertain EV charging loads is presented in the 
following sub-section. 

 
2.2 Two-Stage decomposed stochastic integrated gene- 

ration and transmission planning problem 
 
The integrated generation and transmission planning 

attempts to minimize the combined investment and 
operations costs of generation and transmission. The 
location, amount and timing of generation and transmission 
investment decisions can be formulated as a mixed integer 
programming (MIP) problem. The IRP framework and 
probabilistic models to incorporate the uncertainties in EV 
charging loads were employed in this study. The proposed 
stochastic IRP problem involves both probabilistic and 
deterministic variables, which cannot be simultaneously 
determined within the same optimization problem. Thus, 
the two-stage stochastic decomposition method is 
employed to decompose the original IRP problem into a 
first stage for the deterministic expansion problem and a 
second stage for the stochastic operation problem. The first 
stage of the power expansion planning problem can be 
derived as the following deterministic optimization 
problem (8-12). The objective of the first stage optimization 
problem is to determine the integrated generation and 
transmission investment decisions ( iywg , mnkywt ) and dual 
variable (θ ) that minimizes the total investment costs and 
dual costs subject to planning and dual constraints. 

 
1) First-stage Problem for Power Expansion Planning: 

 
a) Objective function for the power expansion planning 

problem: 
 

, ,
1 , ,

{ }
NY

i iy mnk mnky y
wg wt

y i G m n k L

Minimize IG wg IT wt
θ

θ
= ∈ + ∈ +

 
 ⋅ + ⋅ +
  
∑ ∑ ∑

  (8) 
 

where m n−  are the index node pairs, i  and k  are the 
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indices for generation unit and transmission line, 
respectively; NY  is the number of planning years, G +  
and L +  are the set of candidate generation units and 
transmission lines, respectively; and iIG  and mnkIT are 
the investment cost of building generation unit (i) and 
transmission line (m, n, k) respectively. 

b) Dual constraint for investment variables: 
 

 ( ) ( ) ( )( ),y y y iy y mnkywg wt yν ν νθ φ ξ π≥ − ⋅ + ⋅ ∀  (9) 

 
where ν  is the iteration number index; φ , π , ξ  are 
respectively the dual value of the objective function, the 
generation capacity limit, and the transmission capacity 
limit in the second stage problem; the dual constraint for 
investment variables ( , ,φ π ξ ) is represented in terms of 
the expected marginal values of system operation 
constraints and these variables indicate the optimality and 
feasibility of second stage problems. 

c) Generation and transmission investment constraint: 
 

 10 , ,iy iywg wg i y−≤ − ∀ ∀  (10) 

 10 , ,mnky mnkywt wt mnk y−≤ − ∀ ∀   (11) 

 
where iywg and mnkywt  are generation and transmission 
investment decisions in year y, respectively. 

d) Transmission line variables equality equation: 
 

 , ,mnky nmkywt wt mnk y= ∀ ∀  (12) 

 
Consequently, the second stage of the operation problem 

can be derived as the following optimization problem (13-
19). In the second stage problem, the CLC model [16, 17] 
has been considered to analyze the impact of various EV 
charging scenarios with different charging patterns. 
Integrated generation and transmission investment 
decisions are determined at intervals of one year, while the 
time scale of operation problem is one hour interval. The 
objective of the second stage optimization problem is to 
determine the on/off status ( ithI ) and generation schedules 
( ithP ) of generation units that minimize the total 
operational costs subject to various operations constraints. 

 
2) Second-stage Problem for System Operation: For Each 

Stochastic Scenario,∀Ω  
 
a) Objective function for the system operation problem: 
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where NH , G , and ( )F ⋅  are, respectively, the number 
of hours of operations, the set of generation units, and the 
generation cost function of the generation unit (i). 

b) Power balance equation at each node: 
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where mnkyhf , myhL , mΨ , mΦ , and ,EV myhLω are, 
respectively, the power flow in transmission line (m, n, k), 
system load, the set of generation units and transmission 
lines connected at node (m), and the EV charging load at 
node (m). 

 
c) DC power flow equation: 
 

 
(1 ) ( ) ,

(1 ) ( ),

mnkyh mn mnk myh nyh mnkyh
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wt M B f

f wt M B

δ δ
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≤ − + −
   

, ,mnk y h∀ ∀ ∀   (15) 
 

where mnkB , mnM , and myhδ  are susceptance of 
transmission line (m, n, k), scaling factor for the equality, 
and the voltage angle at node (m), respectively. 

 
d) Generation limits of thermal units: 
 

 min max , , ,i iy iyh i iyP WG P P WG i y h⋅ ≤ ≤ ⋅ ∀ ∀ ∀   (16) 

 
where min

iP , max
iP , and iyWG  are the minimum and 

maximum power output of generation unit (i), and 
generation invest decision determined in first stage 
problem, respectively. 

 
e) Thermal limits of transmission lines: 
 

 max , , ,mnkyh mnky mnkf WT f mnk y h≤ ⋅ ∀ ∀ ∀  (17) 

 
where max

mnkf  and mnkyWT are the maximum capacity and 
investment decision of transmission line (m, n, k). 

 
f) Commitment constraint of thermal units: 
 

 , , ,iyh iyhI WG i y h≤ ∀ ∀ ∀  (18) 

 
g) Power flow variables equality equation: 
 

 , , ,mnkyh nmkyhf f mnk y h= − ∀ ∀ ∀  (19) 

 
In the second stage problem, the EV charging load 

( ,EV myhLω ) is considered in the probabilistic model. As the 
stochastic IRP problem incorporating probabilistic EV 
charging loads has been formulated, the proposed 
stochastic solution technique with LHRS is presented in 
the following section. 
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3. Stochastic Integrated Generation and 

Transmission Planning Method Incorporating 

Electric Vehicle Charging Load 

 
3.1 Probabilistic electric vehicle charging load model 

with latin hyper-rectangle sampling (LHRS) 

 
The uncertainties of EV charging loads are represented 

by probabilistic models and estimated using stochastic 
sampling. When solving a stochastic problem, it is 
necessary to employ the appropriate sampling technique in 
order to estimate the probabilistic distributions of uncertain 
parameters. Because of the complexity of probabilistic 
models of EV charging loads, a large computational effort 
with random sampling is needed for estimating 
uncertainties. In this study, LHRS is employed to reduce 
the computational effort involved in the estimation of 
uncertainties. Conventional Latin hypercube sampling 
(LHS) with equal probability cells often tends to generate 
an insufficient number of samples in the low-probability 
area of non-uniform distributions.  

LHRS is designed to partition PDFs into several cells 
with corresponding probabilities. With LHRS, the means 
and variances of the PDFs of EV charging loads can be 
estimated by following Eqs. (20) and (21): 

 

 ,
1

ˆ ( [ ])
NC

EV
LHRS EV yh c

c

g L c pωµ
=

= ⋅∑  (20) 

 2 2 2
,

1

ˆ( ) [ ( [ ]) ]
NC

EV
LHRS EV yh c

c

g L c pωσ σ
=

= ⋅∑  (21) 

 
where c  represents the index for non-equal probability 
cells and NC  represents the total number of cells, 

, [ ]EV yhL cω  represents generated random EV charging load 
samples in cell (c), ( )g ⋅  represents the estimated 
probabilistic function, and cp  is the corresponding 
probability of cell (c).  

Further, by incorporating means of the PDFs, Eq. (21) 
can be rewritten as follows: 

 

 2 2 2 2
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ˆ ˆ( ) ( [ ]) ( )
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EV EV
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c

E L c pωσ µ
=

= − ⋅∑  (22) 

 
By differentiating (22) with respect to each cell (c) and 

setting the derivatives to zero, the optimal boundary of the 
probability cell ( EV

ca ), that minimizes the variance of the 
estimation, can be determined by the following equation: 

 

1 1
1

1
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c c c c c

c c
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c∀   (23) 

The probability of the c-th cell ( cp ) can be estimated by 
the following equation: 
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where ( )f ⋅  represents the probabilistic density function 
(PDF). The size of non-equal probability cells affects on 
the means and variances of generated samples and, thereby, 
accuracy of estimation. The proper partitioning of the PDF 
into non-equal probability cells results in a sufficient 
number of samples in a low-probability area. This feature 
of LHRS can provide efficient and accurate estimation in 
low-probability areas.  

The stochastic samplings of EV charging loads could 
result in a large number of scenarios, which in turn would 
cause computational burden. Thus, it is necessary to use an 
effective scenario reduction technique in a large-scale 
stochastic optimization problem. The fast-backward 
scenario-reduction technique [24] is adopted in this study 
to approximate a smaller number of scenarios with 
corresponding probabilities. The fast-backward scenario-
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Fig. 1. Proposed procedure to evaluate probabilistic EV 
charging load model with LHRS 
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reduction technique attempts to determine an interval of a 
set of scenarios (Ω ) and assigns new probabilities with 
possible outcomes for the uncertain parameters. The 
probability of each set of scenarios can be estimated by the 
following equation:  

 

 
1

,( ) ,
EV

EV

a

EV yh
a

p f L dL
Ω

Ω−

Ω Ω= ∀Ω∫  (25) 

 
The proposed procedure to evaluate probabilistic models 

of EV charging loads with LHRS is illustrated in Fig. 1. 

 

3.2 Stochastic integrated generation and transmission 

planning method with probabilistic electric vehicle 

charging model 
 
Two-stage decomposition method is used to solve 

stochastic integrated generation and transmission planning 
problem with EV charging load. The procedures of the 
proposed two-stage decomposition method for the 
stochastic IRP problem with EV charging load can be 
summarized as follows: 

 
Step 1) Initialize the iteration counter ν by setting it to 1. 

Also, set the primal variable to 0 and set the cut 
variables to arbitrary initial points. 

Step 2) Compute the probabilistic annual volumes of 
EVs in future year y ( yNEVω ) with annual 
number of new vehicle registrations and the EV 
penetration rates by using Eqs. (1) and (2). 

Step 3) Compute the probabilistic daily electrical energy 
consumed by the EVs ( ,

,
daily

y EVL
ω ) with fuel 

efficiency and the daily driving distance of the 
EVs by using Eqs. (3) and (4). 

Step 4) Compute the probabilistic charging ratio of EVs 
( ,EV h

ωϕ ) based on EV charging scenarios by 
using Eq. (5). 

Step 5) Evaluate the PDF of the probabilistic EV 
charging load ˆ ˆ( ; , )EV EV

LHRS LHRSf µ σ⋅  with prospec-
tive factors determined in Step 2 through Step 4 
by using Eqs. (6) and (7). 

Step 6) Generate the EV charging load samples 
according to the PDF ˆ ˆ( ; , )EV EV

LHRS LHRSf µ σ⋅  with 
LHRS. The probability of the c-th cell ( cp ) can 
be estimated by Eq. (24). 

Step 7) Determine the interval and probability of 
stochastic scenario (Ω ) with possible outcomes 
for the uncertain parameters by using the fast-
backward scenario-reduction technique [24]. 

Step 8) (First stage) Solve the deterministic power 
expansion problem subject to planning constraints 
and determine investment decision variables. The 
determined integrated generation and transmission 
investment decision variables are passed to the 
second stage problem. 

Step 9) (Second stage) Solve the stochastic power 
operation problem subject to operation constraints 
and determine dual variables. The determined 
dual variables are passed to the step length 
calculation procedure. 

Step 10) Update the dual constraint parameters in the 
first stage problem with step length for each dual 
variable of the second stage problem by using the 
following Eqs. (26, 27): 
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,
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v v p
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Ω
+ Ω

Ω=

= + ⋅ ∀∑  (27) 

 
where NΩ  is the number of probabilistic 
scenarios, πλ  and ζλ are respectively, the dual 
values of constrained Eqs. (16) and (17). 

Step 11) (Stopping criterion) Stop if the obtained duality 
gap is less than criterion value ε . 

 

 1 1

( )

,

NY NH

i iyh iyh

y h i G

F P I ν

ν

θ

ε ν
θ

= = ∈

⋅ −

≤ ∀
∑∑∑

 (28) 

 
Otherwise, go back to Step 8 and repeat the process. The 

overall procedure of the proposed method is illustrated in 
Fig. 2. 
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⋮
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Operation problem 
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prospective factors
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the problem
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sample 1

sample N

⋮
..

..

 

Fig. 2. Overall procedure of the proposed planning method 
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4. Numerical Results 

 
In this section, the proposed method is tested on 

integrated generation and transmission planning for the 
future Korean power system. The planning horizon 
considered in this study is from the year 2010 to 2024 [25]. 

The CLC data are obtained from a historical load profile 
of Korean power system in 2009, which is then scaled to 
match annual peak demand projection. Due to the scale of 
the problem, the CLC data are represented by two typical 
days per month (576 h/year) in this study. The data for 
annual electricity peak demand of the Korean power 
system are shown in Table 1. 

The electricity energy consumption is expected to 
continuously increase in Korea, and the average annual rate 
of increase in electricity peak demand is assumed to be 
2.2 % during the planning horizon. Table 2 shows the data 
for installed generation capacity by fuel type in 2009, 
while Table 3 shows the data for the candidate generation 
unit.  

It can be seen from Table 3 that new candidate peaking 
generation units such as LNG-fired units could be located 
in the metropolitan area where the demand is higher. In 
contrast, new base-load candidate generation units such as 
nuclear and coal-fired units could be located in non-
metropolitan areas. In addition, the data for new candidate 

transmission lines are shown in Table 4.  
Investment decisions on the candidate generation units 

and transmission lines that are already made during the 
planning period are treated as fixed variables. The output 
pattern of hydro generations is created from a historic 
hourly hydro generation profile of the Korean power 
system in 2009. The output pattern of wind generation is 
also estimated from historical wind power data in the Jeju 
Island of Korea in 2009. 

 
Table 4. Data for new candidate transmission line 

Line type 
Capacity 
(MW) 

Reactance 
(p.u./km) 

Construction 
cost coefficient 

(k$/km) 
Line#1 466 1.06×10-4 926 
Line#2 518 9.16×10-5 1,057 

 

1c 2c 3c 4c 5c 6c 7c 8c

Sufficient samples 
in low prob. area

Random EV 
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Fig. 3. Probabilistic distribution of EV charging loads 
estimated by the Latin-hyper rectangle sampling 
(LHRS) for different scenarios 

 
In order to analyze the impact of EV deployment on 

power system planning, two EV charging scenarios are 
considered in this case study as follows: (1) regulated 
charging scenario and (2) unregulated charging scenario. 
For the purpose of comparison, it is also assumed in the 
basecase that does not consider the EV deployment. 

The volume of new vehicle registrations during the 
planning horizon is forecasted by using past transportation 
statistical data obtained from the National Statistics Office 
in Korea [26]. In this study, the Bass diffusion model 
described in [22] is used to forecast the penetration growth 
rates of EVs. Furthermore, the saturation level of the Bass 
diffusion model is also determined by using the EV 
penetration rates forecasted by the Roland Berger Strategy 
Consultants [21]. It is also assumed based on the 
transportation survey data in [26] that the average vehicle 
replacement cycle is six years in order to estimate the 
volume of EVs disposed of over the planning horizon. In 
this study, two types of EV model used by Korea’s EV 
demonstration project are considered; these models are the 
i10 manufactured by Hyundai Motors and the SM3  

Table 1. Forecasted annual electricity peak demand in 
Korea [25], (MW) 

Year 2010 2011 2012 2013 2014 2015 2016 
Peak 
load 

70,457 73,713 76,161 79,784 83,360 86,754 89,629 

2017 2018 2019 2020 2021 2022 2023 2024 
92,281 95,075 97,405 99,653 101,640 103,644 105,615 107,437 

 
Table 2. Data for installed generation capacity by fuel type 

Fuel type Capacity (MW) Proportion (%) 

Oil-fired 5,368 7.44 

LNG-fired 17,850 24.73 

Coal-fired 24,205 33.53 

Nuclear 17,716 21.54 

Hydro and Renewable 1,891 2.62 

RCS (Regional 
Cogeneration System) 

1,255 1.74 

The others 3,900 5.40 

 
Table 3. Data for new candidate generation unit 

Fuel type 
Capacity 
(MW) 

Construction 
cost coefficient 

(k$/MW) 

Generation cost 
coefficient 
($/MWh) 

Candidate 
sites 
(Area) 

LNG-fired#1 500 741 83.68 Metro 
LNG-fired#2 700 730 81.69 SW 
Coal-fired#1 500 1,145 41.91 SE 
Coal-fired#2 800 1,058 43.95 Central 
Nuclear#1 1,000 2,122 2.69 SE 
Nuclear#2 1,400 1,790 2.86 SE 
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manufactured by Renault Samsung. The actual fuel 
efficiency of these EVs has been estimated to be 5.25 
km/kWh and 4.38 km/kWh, respectively. Further, the 
average daily driving distance for conventional vehicles is 
assumed to be 42 km based on the transportation statistical 
data of Korea in 2010 [26]. The arrival time of EVs is 
estimated by using the hourly traffic patterns collected by 
the Seoul Metropolitan Police Agency. In addition, the 
travel time to commute is set to about 1 hour based on the 
traffic statistics data in [26]. Table 5 lists the estimated 
annual volumes of EVs in Korea during the planning 
horizon. 

The optimal investment decisions of the stochastic IRP 
problem with EV charging load are determined by the 
proposed iterative procedure presented in Section 3. The 

boundary gap tolerance ε , which determines the stopping 
criterion, is set to 110− . Fig. 3 shows the probabilistic 
distribution of EV charging loads in 2024 for each scenario, 
estimated by the LHRS. Fig. 4 shows the representative 
hourly system load profiles of each scenario for three days 
(72 hours) of the first week in 2024. 

It can be seen from Fig. 4 that in the unregulated 
charging scenario, the system load at peak time can be 
increased due to EV charging loads. The generation and 
transmission investment decision results for each scenario 
in 2024 are shown in Fig. 5. The number of generation unit 
additions and transmission line additions for each scenario 
are also shown in Tables 6 and Table 7, respectively.  

In Tables 6 and 7, the generation and transmission 
investment decision results for each scenario are shown to 
be different due to different EV charging loads. 

In the regulated charging scenario, due to the increase in 
system loads at off-peak time, candidate base-load 
generation units are given more consideration for investment 
than in the other scenarios. In contrast, candidate peaking 
generation units are given less consideration for investment. 
The increase in base-load generation capacity in non-
metropolitan area also requires more new transmission line 
additions between metropolitan and non-metropolitan areas 
since most of candidate base-load generation units are 
located far from the metropolitan area and cause 
transmission congestion between metropolitan and non-
metropolitan areas.  

 
Table 6. Number of generation unit addition by scenario 

Scenario 
Basecase 
scenario 
(w/o EVs) 

Regulated 
charging 
scenario 

Unregulated 
charging 
scenario 

LNG-fired#1 5 3 (▼2) 6 (▲1) 
LNG-fired#2 6 4 (▼2) 7 (▲1) 
Coal-fired#1 3 3 ( - ) 4 (▲1) 
Coal-fired#2 5 6 (▲1) 5 ( - ) 
Nuclear#1 4 5 (▲1) 4 ( - ) 
Nuclear#2 7 8 (▲1) 7 ( - ) 

 

Table 7. Number of transmission line addition by scenario 

Scenario 
Basecase 
scenario 
(w/o EVs) 

Regulated 
charging 
scenario 

Unregulated 
charging 
scenario 

Transmission line 17 22 (▲5) 19 (▲2) 

 
In the unregulated charging scenario, due to the increase 

in system loads at peak and intermediate times, the amount 
of new generation and transmission additions is increased 
compared to that of base scenarios. When it comes to 

Table 5. Estimated annual volumes of EVs in Korea 

Year 2013 2014 2015 2016 2017 2019 2020 2021 2022 2023 2024 

Volume 59,279 166,129 323,352 533,873 800,750 1,516,475 1,806,006 2,118,114 2,391,003 2,622,040 2,808,467 

 

(MW)

(hours)

75,000 

80,000 

85,000 

90,000 

95,000 

100,000 

1 7 13 19 25 31 37 43 49 55 61 67

Basecase scenario (w/o EVs)
Regulated charging scenario
Unregulated charging scenario

 

Fig. 4. Hourly system load profiles for different scenarios
in 2024 
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Regulated charging 
scenario
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Fig. 5. Capacity of generation unit and transmission line 
addition in 2024 
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generation mix, the proportion of peaking generations is 
increased compared to the basecase scenario. 

It is concluded from the numerical results that different 
EV charging patterns have a different impact on integrated 
generation and transmission planning. The numerical 
results imply that if appropriate price signals to regulate 
EV charging loads are provided, EV charging would be at 
off-peak hours; thereby provide an investment signal for 
base-load generation units. 

 
 

5. Conclusion 

 
This paper presents two-stage stochastic decomposition 

method with LHRS to solve the integrated generation and 
transmission planning problem incorporating EV 
deployment. In this paper, a stochastic EV charging load 
model is proposed to handle the uncertainties involved in 
the prospective conditions for estimating EV charging 
loads. Also, the probabilistic distribution of EV charging 
loads is estimated by LHRS to enhance the computational 
performance of the proposed method. Two-stage stochastic 
decomposition method is applied to decompose the original 
IRP problem into the deterministic expansion problem and 
the stochastic operation problem. The results of this study 
imply that different EV charging patterns have a different 
impact on integrated generation and transmission planning. 

EV charging loads can be influenced by EV mix since 
daily consumed energy and hourly charging patterns vary 
with the type of EVs such as commuter EVs and business 
EVs. Therefore, future research is needed to study the 
effect of EV mix on EV charging loads. In addition to EV 
deployment, it is also a challenging task to integrate the 
other smart grid resources such as demand response (DR), 
renewable generation, and electric energy storage systems 
into generation and transmission planning. The next phase 
of this research is to extend the proposed method to 
incorporate these smart grid resources into the integrated 
generation and transmission planning. 
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