• 제목/요약/키워드: Distribution power networks

검색결과 267건 처리시간 0.03초

계층적 클러스터 센서 네트워크의 키 사전 분배 기법에 대한 연구 (A Study of Key Pre-distribution Scheme in Hierarchical Sensor Networks)

  • 최동민;심검;정일용
    • 정보보호학회논문지
    • /
    • 제22권1호
    • /
    • pp.43-56
    • /
    • 2012
  • 무선 센서 네트워크는 재사용이 불가능한 배터리와 제한된 처리능력, 저장 공간을 갖는 다량의 소형 노드로 이루어진다. 이 네트워크에서 노드들은 광범위한 영역에 배치되게 되며 이 노드들은 또한 무선 링크를 통해 노드들 사이에 단거리 통신을 수행한다. 네트워크의 에너지 효율을 위해 동적 클러스터링 기법이 네트워크 수명, 확장, 부하 분산에 효과적인 수단이다. 이 기법은 다수의 노드에 의해 수집되는 데이터가 클러스터 헤드 노드에 의해 집성되어 재전송되는 특징이 있어 해당 노드가 공격자에 노출될 경우 네트워크의 안전을 보장할 수 없게 된다. 그러므로 이러한 클러스터링 기법의 안전한 통신을 위해 노드들 사이에 전송되는 메시지의 암호화와 클러스터 헤드 노드의 보안 유지가 중요하다. 특히, 에너지 효율을 목적으로 설계된 클러스터 기반 프로토콜에서 충분한 데이터 안정성을 보장하기 위해서는 클러스터 구조에 적합한 키 관리 및 인증 기법이 필요하다. 이에 본 논문에서는 계층 클러스터 구조를 갖는 센서 네트워크에 적합한 키 관리 기법을 제안한다. 제안하는 기법은 다항식 키 풀 기반 기법에 기초하며 키 인증 절차를 통해 안정된 네트워크를 유지한다.

개선된 퍼지 C-Means 클러스터링을 이용한 고장전류판별에 관한 연구 (A Study on the Fault Current Discrimination Using Enhanced Fuzzy C-Means Clustering)

  • 정종원;이준탁
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2102-2107
    • /
    • 2008
  • This paper demonstrates a enhanced FCM to identify the causes of ground faults in power distribution systems. The discrimination scheme which can automatically recognize the fault causes is proposed using Fuzzy RBF networks. By using the actual fault data, it is shown that the proposed method provides satisfactory results for identifying the fault causes.

태양 에너지 기반 센서 네트워크에서 데이터의 안정성을 향상시키기 위한 적응형 저장 시스템 (An Adaptive Storage System for Enhancing Data Reliability in Solar-powered Sensor Networks)

  • 노동건
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권5호
    • /
    • pp.360-370
    • /
    • 2009
  • 태양 에너지 기반 센서 네트워크는 배터리 기반과는 다른 에너지 최적화 기법이 필요하다. 태양 에너지는 주기적으로 계속해서 공급되므로, 기본적으로는 센서 시스템을 영원히 동작하게 할 수 있지만, 공급되는 에너지양의 불확실성과 이를 저장하는 배터리의 용량 제한 등 고려해야 할 사항이 많다. 이 논문에서 우리는 태양 에너지 기반 센서 네트워크를 위한 안정적인 스토리지 시스템인 SolarSS를 제안한다. SolarSS는 계층적인 구조로 되어 있는데 각 계층마다 센싱 데이터의 수집, 노드 고장으로 인한 데이터 손실을 줄이기 위한 데이터 복제, 그리고 리소스 고갈로 인한 데이터 손실을 줄이기 위한 데이터 균등화 기능이 포함되어 있다 특히, 우리 시스템은 사용 가능한 에너지의 양에 따라 활성화/비활성화 되는 계층을 동적으로 결정하고, 데이터의 손실을 최소화하기 위한 효율적인 리소스(에너지 및 저장 공간) 할당 기법과 데이터 분배 기법을 제공한다.

Clock Mesh Network Design with Through-Silicon Vias in 3D Integrated Circuits

  • Cho, Kyungin;Jang, Cheoljon;Chong, Jong-Wha
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.931-941
    • /
    • 2014
  • Many methodologies for clock mesh networks have been introduced for two-dimensional integrated circuit clock distribution networks, such as methods to reduce the total wirelength for power consumption and to reduce the clock skew variation through consideration of buffer placement and sizing. In this paper, we present a methodology for clock mesh to reduce both the clock skew and the total wirelength in three-dimensional integrated circuits. To reduce the total wirelength, we construct a smaller mesh size on a die where the clock source is not directly connected. We also insert through-silicon vias (TSVs) to distribute the clock signal using an effective clock TSV insertion algorithm, which can reduce the total wirelength on each die. The results of our proposed methods show that the total wirelength was reduced by 12.2%, the clock skew by 16.11%, and the clock skew variation by 11.74%, on average. These advantages are possible through increasing the buffer area by 2.49% on the benchmark circuits.

Voltage Quality Improvement with Neural Network-Based Interline Dynamic Voltage Restorer

  • Aali, Seyedreza;Nazarpour, Daryoush
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.769-775
    • /
    • 2011
  • Custom power devices such as dynamic voltage restorer (DVR) and DSTATCOM are used to improve the power quality in distribution systems. These devices require real power to compensate the deep voltage sag during sufficient time. An interline DVR (IDVR) consists of several DVRs in different feeders. In this paper, a neural network is proposed to control the IDVR performance to achieve optimal mitigation of voltage sags, swell, and unbalance, as well as improvement of dynamic performance. Three multilayer perceptron neural networks are used to identify and regulate the dynamics of the voltage on sensitive load. A backpropagation algorithm trains this type of network. The proposed controller provides optimal mitigation of voltage dynamic. Simulation is carried out by MATLAB/Simulink, demonstrating that the proposed controller has fast response with lower total harmonic distortion.

풍력발전기의 출력변화에 따른 적응형 과전류계전기 (An Adaptive Overcurrent Relay for a Wind Power Generator Having Variable Outputs)

  • 최동민;권영진;이동규;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.99-101
    • /
    • 2005
  • This paper presents an adaptive overcurrent relay applied to interconnecting wind generators in distribution networks. When a fault occurs in the case of the decreasing the wind power generator output, the conventional overcurrent relay can't detect the fault. The suggested adaptive overcurrent relay can detect. An adaptive overcurrent relay improves reliability and security of the power system protection with distributed generator APSCAD/EMTDC simulation results have shown effectiveness of the proposed method.

  • PDF

A Proposal of the Authentication Protocol for Wireless Mobile Communication Systems Using Keyed Hash Function

  • Park, Young-Ho
    • 한국산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.56-60
    • /
    • 2001
  • 본 논문에서는 무선이동 통신시스템을 위한 인증 프로토콜을 제안한다. 제안한 프로토콜은 상호 인증과 세션 키 분배를 제공하기 위해서 키 해쉬 함수를 사용한다. 본 프로토콜은 이 동국에서의 계산량이 적다. 또한, 중간 전송 네트워크에서의 최소 보호설정을 제공하기 위하여 고정 망에서의 보호 설정을 하지 않았다.

  • PDF

배전계통에서 신경회로망을 이용한 고저항 고장 검출에 관한 연구 (A Study on High Impedance Fault Detection Using Neural Networks in Power Distribution Systems)

  • 이화석;이상성;박준호;장병태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.811-813
    • /
    • 1996
  • High impedance fault can not be easily detected by conventional method. But if it would not be detected and cleared quickly, it can result in fires, and electric shock. In this paper, neural network, which has learning capability, is used for high impedance fault detector. The potential of the neural network approach is demonstrated by simulation using KEPCO's measured data. The instantaneous values and frequency spectrum of current are respectively used as the inputs of neural networks. Also, the methods using combined data to exploit the advantage of each data are proposed. In this paper, back-propagation network(BPN) is used for high impedance fault detector and can use for high speed relay because it detects faults within 1 cycle.

  • PDF

신경회로망을 이용한 고조파 부하의 식별 (Identification of harmonic loads using neural network)

  • 황창선;심재식;김동완;김문수;최중락
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.235-237
    • /
    • 1993
  • Semiconductor devices generate harmonics which induced bad effects against power distribution systems. To surpress harmonics, the filter design and the identification of harmonic load sources are needed. In this paper, artificial neural networks are used to identify the nonlinear relationship between harmonic loads and harmonic currents that vary at times. To find the best adequate network for solving this identification problem, we compared with recognition rates of neural networks by changing hidden layer neuron number.

  • PDF

Detection and Trust Evaluation of the SGN Malicious node

  • Al Yahmadi, Faisal;Ahmed, Muhammad R
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.89-100
    • /
    • 2021
  • Smart Grid Network (SGN) is a next generation electrical power network which digitizes the power distribution grid and achieves smart, efficient, safe and secure operations of the electricity. The backbone of the SGN is information communication technology that enables the SGN to get full control of network station monitoring and analysis. In any network where communication is involved security is essential. It has been observed from several recent incidents that an adversary causes an interruption to the operation of the networks which lead to the electricity theft. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we have introduced a machine learning based SVM method that detects malicious nodes in a smart grid network. The algorithm collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) classifies nodes into Normal or malicious nodes giving the statues of 1 for normal nodes and status of -1 for malicious -abnormal-nodes. Once the malicious nodes have been detected, we have done a trust evaluation based on the nodes history and recorded data. In the simulation, we have observed that our detection rate is almost 98% where the false alarm rate is only 2%. Moreover, a Trust value of 50 was achieved. As a future work, countermeasures based on the trust value will be developed to solve the problem remotely.