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Abstract – Custom power devices such as dynamic voltage restorer (DVR) and DSTATCOM are 

used to improve the power quality in distribution systems. These devices require real power to 

compensate the deep voltage sag during sufficient time. An interline DVR (IDVR) consists of several 

DVRs in different feeders. In this paper, a neural network is proposed to control the IDVR 

performance to achieve optimal mitigation of voltage sags, swell, and unbalance, as well as 

improvement of dynamic performance. Three multilayer perceptron neural networks are used to 

identify and regulate the dynamics of the voltage on sensitive load. A backpropagation algorithm trains 

this type of network. The proposed controller provides optimal mitigation of voltage dynamic. 

Simulation is carried out by MATLAB/Simulink, demonstrating that the proposed controller has fast 

response with lower total harmonic distortion.    
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1. Introduction 

 

The application of voltage-sensitive equipment, such as 

automatic production lines, computer centers, hospital 

equipment, programmable logic controllers (PLC), 

adjustable speed drives (ASD), and air-conditioning 

controllers [1, 2], has been increasing. 

Voltage sag is defined as the reduction in voltage RMS 

between 0.1 and 0.9 PU within 0.5 cycles to a few seconds [3].  

Swell is defined as an increase in nominal voltage 

between 1.1 and 1.8 PU during 0.5 cycles to 1 minute.  

Faults or large induction motors starting in the power 

system may cause voltage sags or swell. Consequently, 

other equipment may shut down [3, 4]. 

A solution for power quality improvement is to use 

custom power devices like a dynamic voltage restorer 

(DVR). External energy storage is necessary to provide the 

requirement for real power. Thus, the maximum amount of 

real power that can be provided to the load during voltage 

sag mitigation is a deciding factor of the capability of a DVR. 

However, the energy requirement cannot be met by the 

application of such phase advance technology alone to 

compensate the deep sag of long duration; in addition, since 

there are the limitations in the provider of these energy 

devices, it is necessary to minimize energy injection [5]. 

An interline DVR (IDVR) provides a way to replenish 

dynamically the energy in the common DC link energy 

storage. The IDVR is similar to the interline power flow 

controller (IPFC), which is used in transmission systems 

[6]. In this type of device, several DVRs prevent sensitive 

load voltage interruption in the distribution feeders 

emanating from different grid substations that share a 

common DC link energy storage. The DC links of these 

DVRs can be connected to a common terminal in the form 

of an IDVR system. This would reduce the cost of the 

custom power device as sharing a common DC link 

reduces the size of the DC link storage capacity 

substantially compared to that of a system in which loads 

are protected by clusters of DVRs with separate energy 

storage systems [7]. 

The control system of the IDVR plays an important role 

in the requirements for fast response against voltage sags 

and variations in the connected load. 

The IDVR must be controlled properly to obtain the best 

compensation effects. In recent years, most studies have 

presented several methods for the design of IDVR 

controllers using linear control strategies. In such case, the 

system equations are linearized at a specific operating 

point, and the PI controllers are tuned based on the 

linearized model in order to have the best possible 

performance. The drawback, however, of such PI 

controllers is that their performance degrades as the system 

operating conditions change. On the other hand, nonlinear 

adaptive controllers can provide suitable control 

capabilities over a wide range of operating conditions, but 

they have a more complex configuration and are more 

difficult to implement compared with linear controllers. In 

addition, they need a mathematical model of the system to 

be controlled [8, 9]. 

Artificial neural networks (ANNs) present a solution to 

this problem as they can identify and model a nonlinear 
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system. This technique is currently being regarded as a new 

tool to design a DSTATCOM control system. The ANN 

presents two principal characteristics. First, it is not 

necessary to obtain specific input–output relationships, but 

they are formulated through a learning process or an 

adaptive algorithm. Second, ANN can be trained online 

without requiring large amount of database [10]. 

In this paper, a new voltage disturbance detection 

method with neural network control is presented. With the 

proposed method, the amplitude of each phase voltage is 

tracked instantaneously and the delay time of recovery 

from voltage disturbance can be minimized even under 

deep unbalanced voltage conditions. It is proposed that a 

new modified d-q transformed voltage regulator for single-

phase inverter is used to obtain quick dynamic response 

and robustness, where three phase inverters are controlled 

by neural network controller. Therefore, the trained ANN-

based estimator can correctly predict a set of proper control 

variables for the control system of the IDVR to meet a 

certain control goal. 

 
 

2. The Proposed IDVR in a Distribution System 

Based on Neural Network 

 

The proposed system configuration of the IDVR is 

shown in Fig. 1. The power circuit of the IDVR is 

composed of two DVRs in two different feeders, where 

each DVR is composed of a voltage source inverter, 

common DC link, and filter circuit and injection 

transformer. 
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Fig. 1. The proposed IDVR in a distribution network based 

on ANN 
 

 

When one of the DVRs compensates for voltage sag, the 

other DVR in the IDVR system operates in power flow 

control mode to restore the common DC link, which is 

depleted to the real power taken by the DVR working in 

the voltage sag compensation. 

 
 

3. Control Strategy 

 

The proposed control strategy is based on minimal 

energy strategy [10]; therefore, this controller optimizes 

energy balance between two feeders. For a given load and 

balanced sag, if voltage phasor VDVR1 is perpendicular to 

the load current IL1, then the active power injection is not 

required to restore the voltage by the DVR. Fig. 2 shows 

the phasor diagram for this control strategy. In this diagram, 

δ , and α  are the angles of VL1 and VDVR1, respectively. 

In this case, α  can be obtained from the following: 
 

  (1) 

   
The δ  is calculated using the following equation: 

 

  (2) 

 

If the supply voltage parameters satisfy the following 

condition, then the δ  can be defined as follows: 

 

  (3) 

 

Eq. (3) means that the level of voltage sag is shallow sag. 

Hence, the injected active power of the DVR is equal to 

zero and the optimum α  is obtained from (1). If 

inequality (3) is not satisfied, then level of voltage sag will 

be deep sag and the active injected power is not equal to 

zero [11]. 

 

αβ
φ

 

Fig. 2. The block diagram of the control strategy 

 

 

4. ANN Controller Based on IDVR 

 

Fig. 3 illustrates the control system of one of the DVRs 

in the proposed IDVR. In this proposed method, the 

injected three voltages by the phase locked loop (PLL) 

tracks the phase of the load voltage. The load voltage is 

transformed to ,dV  ,qV  and oV  based on park 

transformation according to Eqs. (4), (5), and (6), 

respectively. For the regulation of load voltage, they are 

compared with reference signals ,drefV  ,qrefV  and orefV
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and produce errors. The errors, ( ),e k  are considered as 

ANN controller inputs. 

 

  (4) 

  

  (5) 

  (6) 
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Fig. 3. The control system of the proposed IDVR 

 

In a recent publication, an NN was considered for the 

implementation of instantaneous current control PWM [12], 

where the sinusoidal phase voltage commands were 

compared with the respective feedback voltages, and the 

resulting loop the pulse with signals through a feedback 

NN. 

The converter can be controlled well as long as ,diV  
,qiV  and oiV  can be determined to the desired value. The 
,diV  ,qiV  and oiV  are approximated by a neural network, 

where dpV  and qpV  are chosen as the network’s inputs, 

as shown in Fig. 4. The network is expressed in following 

form: 

 

  (7) 

 

where ˆ ˆ ˆ( , , )di qi oiV V V  is the estimate of ( , , ),di qi oiV V V  

NN denotes the network used to approximate 
ˆ ˆ ˆ( , , )di qi oiV V V , and W is the corresponding weight vector. 

 

4.1. The Architecture of ANN 

 

Fig. 4 illustrates the architecture of artificial neural 

network (ANN). The ANN controller used in this control 

system, consists of three neuron layers, the input layer, the 

hidden layer and the output layer. The input layer offers 

connection point to transmit the input signal to the hidden 

layer. The latter begins the learning process and the output 

layer continues the learning process and provides outputs. 

The hidden layer neurons have a tan sigmoid transfer 

function, and the output layer neurons have a linear 

transfer function. The ANN has three inputs that are the 

three phase voltage errors of the IDVR. It also has three 

outputs that are the three switching functions of the 

inverter legs. 

 

∑∑

 

Fig. 4. MLP neural network configuration 

 

The output of ANN controller is the reference variable 

for the PWM generator. Therefore, the output of ANN with 

varying amplitude and phase passes through a comparator 

and is compared with a carrier signal. When the ANN 

output’s magnitude is more than carrier signal’s magnitude, 

the PWM circuit generates high output and when the ANN 

output’s magnitude is less than carrier signal’s magnitude, 

the PWM circuit produces low output. The carrier signal is 

a saw tooth waveform at 20 kHz taking values between -1 

and 1. 

On introducing the input vector je  where 
[ ]Tj a b ce e e e=  the equations associated with the signals 

flowing from each layer to the next layer are: 

 

  (8) 

  (9) 

 

where jI  is the hidden layer output vector jO  is the 

output vector of the ANN, f is the transfer function of the 

hidden layer (nonlinear function), g is the transfer function 

of the output layer (linear function); hW  is the weight 

matrix of the hidden layer; oW  is the weight matrix of the 

output layer; hB  is the bias vector of the hidden layer 

neurons; and oB  is the bias vector or the output layer. In 

this paper, the functions of f and g are as follows:  

 

  (10) 

  (11) 

 

where λ   is the up ratio of the function, which is between 

0 and 1 [13]. 
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4.2 The procedure of training the ANN 

 

The ANN is trained by varying the weights ijW  and the 

biases jB . The training criterion is taken as the mean 

square error of the ANN output with a value of 0.0001 and 

the error function is defined as the following equation: 

 

  (12) 

 

where N is the number of output neurons and e(i) is the 

instantaneous error between the actual and estimated 

values of the output. The training is completed when the 

value of J is less than 0.0001 [14]. 

The hidden layer has no target values. Hence, a 

procedure is applied to back-propagate the output layer 

errors to the hidden layer neurons in order to optimize their 

weights and minimize the error. The training starts with a 

gradient algorithm. When the minimum is approached, the 

gradient takes lower values and the convergences toward 

this minimum is greatly retarded [15]. Before the start of 

the training, weights are initially given small random 

values to reduce the chance of premature saturation of the 

logistical neurons, thus reducing the training speed. The 

common principle of second-order algorithms is to 

compute a descent direction obtained by a linear 

transformation of the cost function gradient. For the 

gradient algorithm, the weights are updated at each step 

according to the following: 

 

  (13) 

  (14) 

 

where η    is the learning rate parameter., Learning occurs 

quickly if η  is large; however, it may also lead to 

instability and increase in errors if η  is too large [16]. 

Fig. 5 shows the training, validation, and test errors used 

to check the progress of training. This result is reasonable 

since the test set error and the validation set error have 

similar characteristics; it does not appear that any 

significant over fitting has occurred. 

The following figure shows the graphical output 

provided by postreg. The network outputs are plotted 

versus the targets as open circles. The best linear fit is 

indicated by a dashed line. The perfect fit (the output is 

equal to targets) is shown by the solid line. The output 

seem to track the targets reasonably with regression of 0.78. 

 

 

Fig. 6. The estimation of the function by the ANN 

 

 

5. Results of Simulation 

 

The proposed detailed IDVR based on ANN controller 

with a three-phase bridge converter connected into a 

distribution system is modeled and analyzed by using 

MATLAB/Simulink. The learning process of ANN is 

developed in MATLAB, aided by the toolbox neural 

network. 

 

5.1 Power quality compensation 
 
The most common power quality problem with 

compensation was investigated. 

(a) Voltage sag: This refers to a reduction of the normal 

voltage level between 10% and 90% of the nominal 

RMS voltage at the power frequency during half-

cycle to one minute [17]. Fig. 7 shows the efficiency 

 

 

Fig. 5. Training validation and test curves of the neural 

network 
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Fig. 7. The voltage sag compensation by one of the DVR in 

the IDVR based on ANN 
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of the proposed control structure based on ANN 

control in regulating the point common coupling 

(PCC) voltage at 1.0 PU; the voltage sag occurred at 

t = 0.4 seconds for a duration of 0.1 seconds by fault 

in feeder 2. 

(b) Voltage swell: A voltage swell is an increase in the 

RMS voltage in the domain of 1.1–1.8 PU during 

greater than half a main cycle and less than 1 minute 

[17]. Fig. 8 shows the voltage swell at t = 0.4 

seconds for a duration of 0.1 seconds; the IDVR 

injects series voltage with phase angle of 180° 

voltage supply and compensates the voltage swell. 
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Fig. 8. The voltage swell compensation by one of the DVR 

in the IDVR based on ANN 

 

 

(c) Unbalance voltage: This is a voltage variation in a 

three-phase system in which the three voltage 

magnitudes or the phase angle differences between 

them are not equal. Fig. 9 presents an unbalance 

voltage and its compensation by an ANN-based 

IDVR. 
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Fig. 9. The voltage unbalance compensation by one of the 

DVR in the IDVR based on ANN 

 

5.2 The characteristic of the proposed controller 

 

The IDVR with fast dynamics compensates power 

quality problems. Fig. 10 shows a comparison between the 

load voltage waveform by using PI controller and ANN 

controller for voltage sag compensation. The voltage sag 

occurred at 0.4 seconds. The neural network controller 

clearly provides better performance than the PI controller; 

the ANN has fast dynamic response and produces low 

harmonic. 
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Fig. 10. The comparison between the load voltage waveform 

in PI and ANN controller 

 

 

 

6. Discussion on the total harmonic distortion 

 

The total harmonic distortion (THD) is determined in the 

following form:  

 

  (15) 

 

where 1V  is the magnitude of the main harmonic in terms 

of RMS and nV  is the magnitude of the nth harmonic. 

According to the IEEE standard 519–1992 “the objective 

of the current limits the maximum individual frequency 

voltage harmonic to 3% of the fundamental and the voltage 

THD to 5% for the system without a major parallel 

resonance at one of the injected harmonic frequencies” 

[18]. 

Fig. 11 compares the THD of the load voltage after 

compensation by the IDVR based on PI and ANN 

controllers in the compensation case with ANN controller 

after passive filter: 3.3%THD ≤ . Hence, the load voltage 

containing minimum harmonic and the resulting loss of 

inverter is less. 

The delay time of recovery is the time at which the load 

voltage is restored to the initial state. Therefore, if this time 

is reduced, the dynamic response of the DVR will be fast. 

Table 1 compares the THD and delay time of recovery of 

the load voltage in different control systems. 

Therefore, when power quality problems occur, the 

proposed system has a fast transient response. The IDVR-

based neural network compensates power quality problems 

better than a PI controller. 
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(b) 

Fig. 11. The THD of the load voltage after compensation 

by IDVR based on a) PI controller and b) neural 

network controller 

 

Table 1. The comparison between THD and delay time of 

recovery 

Control system Max THD 
Delay time 

of recovery 

PI (classic controller) 7.41 15.2 msec 

Neural network controller 3.30 2.7 msec 
 
 

7. Conclusion 

 

In this paper, a novel control concept using ANN-based 

estimator for the IDVR system was presented. Simulation 

results show that the trained ANN-based estimator can 

correctly estimate the patterns of IDVR control variables. 

The ANN for the IDVR is proven to be very effective and 

robust in compensation deep voltage sag and in power 

quality problem. The proposed controller has fast dynamic 

response, and the THD of the injected voltage or load 

voltage is always kept below the standard limits by using 

this control strategy. 

 
 

Appendix 

 

Table 2 shows the applied parameters in the simulation 

of IDVR and system. 

Table 2. The applied value in the simulation of IDVR and 

system  

Parameter Value 

Power supply 380 Vrms (line to line); 50 Hz 

Single-phase injection 

transformer 

55/110 Vrms; 3 kVA leakage;  

inductance 0.03 PU 

Carrier frequency 20 kHZ 

Inverter filter 
Inductance Lf = 22 mH; 

capacitance Cf = 50 uF 

DC link capacitor Cdc = 20 mF 
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