• Title/Summary/Keyword: Distribution pipe

Search Result 620, Processing Time 0.031 seconds

Protection Performance Simulation of Coal Tar-Coated Pipes Buried in a Domestic Nuclear Power Plant Using Cathodic Protection and FEM Method (국내원전에 매설된 콜타르 코팅 배관의 음극방식과 FEM법을 이용한 방식성능 시뮬레이션)

  • Chang, H.Y.;Kim, K.T.;Lim, B.T.;Kim, K.S.;Kim, J.W.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.115-127
    • /
    • 2017
  • Coal tar-coated pipes buried in a domestic nuclear power plant have operated under the cathodic protection. This work conducted the simulation of the coating performance of these pipes using a FEM method. The pipes, being ductile cast iron have been suffered under considerably high cathodic protection condition beyond the appropriate condition. However, cathodic potential measured at the site revealed non-protected status. Converting from 3D CAD data of the power plant to appropriate type for a FEM simulation was conducted and cathodic potential under the applied voltage and current was calculated using primary and secondary current distribution and physical conditions. FEM simulation for coal tar-coated pipe without defects revealed over-protection condition if the pipes were well-coated. However, the simulation for coal tar-coated pipes with many defects predict that the coated pipes may be severely degraded. Therefore, for high risk pipes, direct examination and repair or renewal of pipes are strongly recommended.

A Study on the Verification Test for a Deformable Rod Sensor (변형봉 센서 검증실험에 관한 연구)

  • 김상일;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.35-47
    • /
    • 2003
  • In the conventional axial load transfer analysis for composite piles (i.e., steel pipe pile filled with concrete), it was assumed that the concrete's strain is same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by formular as prescribed by specification is used in calculation of pile axial load. But, the pile axial load calculated by conventional method had some difference with the actual pile load. So, the behavior of a composite pile could not be analyzed exactly. Thus, the necessity to measure the strain for each pile components was proposed. In this study, the verification test for DRS (Deformable Rod Sensor) developed to measure the strain of each pile component (i.e., the steel and the concrete) was performed. In the calculation of pile axial load using the DRS, elastic modulus of concrete could be determined by the uniaxial compression test for the concrete cylinder samples made in the test site and an average tangential modulus in the stress range of (0.2∼0.6)f$_ck$ was taken.

Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads (굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Bubble formation in globe valve and flow characteristics of partially filled pipe water flow

  • Nguyen, Quang Khai;Jung, Kwang Hyo;Lee, Gang Nam;Park, Hyun Jung;To, Peter;Suh, Sung Bu;Lee, Jaeyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.554-565
    • /
    • 2021
  • Air bubble entrainment is a phenomenon that can significantly reduce the efficiency of liquid motion in piping systems. In the present study, the bubble formation mechanism in a globe valve with 90% water fraction flow is explained by visualization study and pressure oscillation analysis. The shadowgraph imaging technique is applied to illustrate the unsteady flow inside the transparent valve. This helps to study the effect of bubbles induced by the globe valve on pressure distribution and valve flow coefficient. International Society of Automation (ISA) recommends locations for measuring pressure drop of the valve to determine its flow coefficient. This paper presents the comparison of the pressures at different locations along with the upstream and the downstream of the valve with the values at recommended positions by the ISA standard. The results show that in partially filled pipe flow, the discrepancies in pressure between different measurement locations in the valve downstream are significant at valve openings less than 30%. The aerated flow induces the oscillation in pressure and flow rate, which leads to the fluctuation in the flow coefficient of the valve. The flow coefficients have a linear relationship with the Reynolds number. For the same increase of Reynolds number, the flow coefficients grow faster with larger valve openings and level off at the opening of 50%.

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

Optimal placement of isolation valves in water distribution networks based on segment analysis (단수구역 해석을 이용한 상수관망시스템 내 최적 밸브위치 결정)

  • Lim, Gabyul;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.291-300
    • /
    • 2019
  • If pipes are damaged in a water distribution network (WDN), adjacent valves are closed to isolate the pipes for repair. Due to the closed valves, parts of WDN are isolated from water supply sources. The isolated area is divided into Intended Isolation Area (IIA) and Unintended Isolation Area (UIA). The IIA occurs by intention to isolate the damaged pipe, while UIA is unintentionally disconnected from the sources due to IIA. Thus, the extension of isolated area and suspended flows are mainly affected by number and location of installed valves in WDN. In this study, optimization models were developed to determine optimal valve locations in WDN. In a single-objective model, total water supply suspension is minimized, while a multi-objective model intends to simultaneously minimize the suspended flow and valve installation cost. Optimal valve placement results obtained from both models were compared and analyzed using a sample application network.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Development of multi-objective optimal design approach for water distribution systems based on water quality-hydraulic constraints according to network characteristic (네트워크 특징에 따른 수질-수리 제약조건 기반 상수도관망 다목적 최적 설계 기술개발)

  • Ko, Mun Jin;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • Water distribution systems (WDSs) are a representative infrastructure injecting chlorine to disinfect the pathogenic microorganisms and supplying water from sources to consumers. Also, WDSs prescribe to maintain the usual standard (0.1-4.0 mg/L) of residual chlorine. However, the user's usage pattern, water age, network shape, and type affect the hydraulic features (i.e. nodal pressure, pipe velocity) and water quality features (i.e., the residual chlorine concentration). Therefore, this study developed an optimization approach for optimizing WDSs considering water quality-hydraulic factors using Multi-objective Harmony Search (MOHS). The design cost and the system resilience were applied as the design objective functions, and the nodal pressure and the concentration of residual chlorine are used as constraints. The derived optimal designs through this approach were analyzed according to network characteristics such as the network shapes and type. These optimal designs can meet the safety of economic and water quality aspects to increase user acceptance.

Determining chlorine injection intensity in water distribution networks: a comparison of backtracking and water age approaches

  • Flavia D. Frederick;Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.170-170
    • /
    • 2023
  • Providing safe and readily available water is vital to maintain public health. One of the most prevalent methods to prevent the spread of waterborne diseases is applying chlorine injection to the treated water before distribution. During the water transmission and distribution, the chlorine will experience a reduction, which can imply potential risks for human health if it falls below the minimum threshold. The ability to determine the appropriate initial intensity of chlorine at the source would be significant to prevent such problems. This study proposes two methods that integrate hydraulic and water quality modeling to determine the suitable intensity of chlorine to be injected into the source water to maintain the minimum chlorine concentration (e.g., 0.2 mg/l) at each demand node. The water quality modeling employs the first-order decay to estimate the rate of chlorine reduction in the water. The first method utilizes a backtracking algorithm to trace the path of water from the demand node to the source during each time step, which helps to accurately determine the travel time through each pipe and node and facilitate the computation of time-dependent chlorine decay in the water delivery process. However, as a backtracking algorithm is computationally intensive, this study also explores an alternative approach using a water age. This approach estimates the elapsed time of water delivery from the source to the demand node and calculate the time-dependent reduction of chlorine in the water. Finally, this study compares the outcomes of two approaches and determines the suitable and effective method for calculating the chlorine intensity at the source to maintain the minimum chlorine level at demand nodes.

  • PDF