DOI QR코드

DOI QR Code

Optimal placement of isolation valves in water distribution networks based on segment analysis

단수구역 해석을 이용한 상수관망시스템 내 최적 밸브위치 결정

  • Lim, Gabyul (Department of Civil Engineering, Kyung Hee University) ;
  • Kang, Doosun (Department of Civil Engineering, Kyung Hee University)
  • 임갑율 (경희대학교 사회기반시스템공학과) ;
  • 강두선 (경희대학교 사회기반시스템공학과)
  • Received : 2019.01.30
  • Accepted : 2019.03.17
  • Published : 2019.04.30

Abstract

If pipes are damaged in a water distribution network (WDN), adjacent valves are closed to isolate the pipes for repair. Due to the closed valves, parts of WDN are isolated from water supply sources. The isolated area is divided into Intended Isolation Area (IIA) and Unintended Isolation Area (UIA). The IIA occurs by intention to isolate the damaged pipe, while UIA is unintentionally disconnected from the sources due to IIA. Thus, the extension of isolated area and suspended flows are mainly affected by number and location of installed valves in WDN. In this study, optimization models were developed to determine optimal valve locations in WDN. In a single-objective model, total water supply suspension is minimized, while a multi-objective model intends to simultaneously minimize the suspended flow and valve installation cost. Optimal valve placement results obtained from both models were compared and analyzed using a sample application network.

상수관망시스템 내 관로가 파손될 경우, 수리를 위해 파손 관로와 인접한 밸브를 차폐하게 된다. 이때, 밸브 차폐로 인해 관망의 일부분이 고립되어 용수공급이 차단되는 단수구역이 발생하게 된다. 단수구역은 파손 관을 포함한 직접고립지역과 직접고립지역으로 인해 의도치 않게 수원으로부터 물 공급이 차단되는 간접고립지역으로 구분된다. 따라서, 관 파손에 의한 단수구역 및 단수용량은 시스템 내 설치된 밸브의 개수와 위치에 크게 영향을 받게 된다. 본 연구에서는 상수관망시스템 내 최적의 밸브위치를 결정하기 위해 최적화 모형을 개발하고 적용하였다. 예시 관망을 대상으로 단수용량 최소화를 목적함수로 설정한 단목적 최적화와 단수용량과 밸브 설치비용을 동시에 최소화하는 다목적 최적화를 각각 수행하였으며, 두 가지 모형을 통해 도출된 최적 밸브설치 결과를 비교, 분석하였다.

Keywords

SJOHCI_2019_v52n4_291_f0001.png 이미지

Fig. 1. Sample network

SJOHCI_2019_v52n4_291_f0002.png 이미지

Fig. 2. Intended isolation area search (P7 damaged)

SJOHCI_2019_v52n4_291_f0003.png 이미지

Fig. 3. Link-based adjacency matrix reflecting intended isolation area

SJOHCI_2019_v52n4_291_f0004.png 이미지

Fig. 4. Unintended isolation area search (P7 damaged)

SJOHCI_2019_v52n4_291_f0005.png 이미지

Fig. 5. Intended and unintended isolation area when P7 damaged

SJOHCI_2019_v52n4_291_f0006.png 이미지

Fig. 6. Application network

SJOHCI_2019_v52n4_291_f0007.png 이미지

Fig. 7. Optimal valve placement results from SOGA

SJOHCI_2019_v52n4_291_f0008.png 이미지

Fig. 8. Pareto optimal solutions from MOGA

SJOHCI_2019_v52n4_291_f0009.png 이미지

Fig. 9. Suspended flow rate vs. Valve cost of pareto solutions

SJOHCI_2019_v52n4_291_f0010.png 이미지

Fig. 10. Total evaluation score of individual pareto solutions

Table 1. Results of SOGA

SJOHCI_2019_v52n4_291_t0001.png 이미지

Table 2. Summary of pareto optimal solutions from MOGA

SJOHCI_2019_v52n4_291_t0002.png 이미지

Table 3. Results comparison between SOGA and MOGA

SJOHCI_2019_v52n4_291_t0003.png 이미지

References

  1. Alvisi, S., and Franchini, M. (2014). "A Heuristic procedure for the automatic creation of district metered areas in water distribution systems." Journal of Water Resources Planning and Management, Vol. 133, No. 2, pp. 145-155. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:2(145)
  2. Alvisi S., Creaco, E., and Franchini, M. (2011). "Segment identification in water distribution systems." Urban Water Journal, Vol. 8, No. 4, pp. 203-217. https://doi.org/10.1080/1573062X.2011.595803
  3. Choi, Y., Lee, H., Jung, D., and Kim, J. (2017). "Developmant of partitioning technique for improving water distribution system resilience." KSCE 2017 CONVENTION, 2017.10, pp. 172-173.
  4. Creaco, E., Franchini, M., and Alvisi, S. (2010). "Optimal placement of isolation valves in water distribution systems based on valve cost and weighted average demand shortfall." Water Resources Management, Vol. 24, No. 15, pp. 4317-4338. https://doi.org/10.1007/s11269-010-9661-5
  5. Giustolisi, O., and Savic, D. (2010). "Identification of segments and optimal isolation valve system design in water distribution networks." Urban Water Journal, Vol. 7, No. 1, pp. 1-15. https://doi.org/10.1080/15730620903287530
  6. Hernandez, E., and Ormsbee, L. E. (2018). "Application of segment based robustness assessment for water distribution networks." WDSA/CCWO Joint Conferernce 2018, Vol. 1, No. 031.
  7. Jun, H. (2005). "Isolating subsystems by valves in a water distribution system and evaluating the system performance." Journal of Korea Water Resources Association, Vol. 38, No. 7, pp. 585-593. https://doi.org/10.3741/JKWRA.2005.38.7.585
  8. Jun, H. (2006). "An evaluation of the pipe failure impact in a water distribution system considering subsystem isolation." Journal of Korea Water Resources Association, Vol. 39, No. 2, pp. 89-98. https://doi.org/10.3741/JKWRA.2006.39.2.089
  9. Jun, H., and Loganathan, G. V. (2007). "Valve-controlled segments in water distribution systems." Journal of Water Resources Planning and Management, Vol. 133, No. 2, pp. 145-455. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:2(145)
  10. Kim, S., Jun, H., Baek, C., Kim, K., and Yoo, D. (2007). "Proposing a technique for improvement of water distribution system reliability." KSWW and KSWE Association Conference, 2007 (0), pp. 1-6.
  11. Li, P., and Kao, J. J. (2008). "Segment-based vulnerability analysis system for a water distribution network." Civil Engineering and Environmental Systems, Vol. 25, No. 1, pp. 41-58. https://doi.org/10.1080/10286600701838709
  12. Mahmoud, H., Kapelan, Z., and Savic, D. (2017). "Segment identification in water distribution systems by using network topological matrices." Conference CCWI 2017-Computing and Control for the Water industry, Vol. 15.
  13. Walski, T. M. (1993). "Water distribution valve topology for reliability analysis." Reliability engineering & system safety, Vol. 42, No. 1, pp. 21-27. https://doi.org/10.1016/0951-8320(93)90051-Y
  14. Yoo, D., Kim, K., Park, M., and Joo, J. (2017). "Multi-objective optimal design for improving water supply serviceability considering segments in water distribution networks." Journal of the Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 29-37. https://doi.org/10.9798/KOSHAM.2017.17.2.29