• Title/Summary/Keyword: Distribution of grain shape

Search Result 81, Processing Time 0.026 seconds

Growth Behavior of (Ti,W)(C,N) and WC grains in a Co Matrix (Co 액상 내에 공존하는 (Ti,W)(C,N)과 WC입자의 성장 거동)

  • 이보아;윤병권;강석중
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 2004
  • Growth behavior of two different types of grains, faceted and rounded, in a liquid matrix has been studied in the (75WC-25TiCN)-30Co system. Powder samples were sintered above the eutectic temperature for various times under a carbon saturated condition. (Ti,W)(C,N) grains with a rounded shape and WC grains with a faceted shape coexisted in the same Co based liquid. With increasing sintering time, the average size of (Ti.W)(C,N) grains increased continuously and very large WC grains appeared. The growth of rounded (Ti,W)(C,N) grains followed a cubic law, r^3-r^3_0$=kt, where r is the average size of the grains, $r_0$ the initial average size, k the proportionality constant and t the sintering time. indicating a diffusion-controlled growth. On the other hand, the growth of the faceted WC grains resulted in a bimodal grain size distribution, showing an abnormal grain growth. These observations show that the growth behavior of different types of grains is governed by their shape, faceted or rounded, even in the same liquid matrix.

Effects of Grain Size Distribution on the Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • One of the characteristics of polycrystalline graphene that determines its material properties is grain size. Mechanical properties such as Young's modulus, yield strain and tensile strength depend on the grain size and show a reverse Hall-Petch effect at small grain size limit for some properties under certain conditions. While there is agreement on the grain size effect for Young's modulus and yield strain, certain MD simulations have led to disagreement for tensile strength. Song et al. showed a decreasing behavior for tensile strength, that is, a pseudo Hall-Petch effect for the small grain size domain up to 5 nm. On the other hand, Sha et al. showed an increasing behavior, a reverse Hall-Petch effect, for grain size domain up to 10 nm. Mortazavi et al. also showed results similar to those of Sha et al. We suspect that the main difference of these two inconsistent results is due to the different modeling. The modeling of polycrystalline graphene with regular size and (hexagonal) shape shows the pseudo Hall-Petch effect, while the modeling with random size and shape shows the reverse Hall-Petch effect. Therefore, this study is conducted to confirm that different modeling is the main reason for the different behavior of tensile strength of the polycrystalline structures. We conducted MD simulations with models derived from the Voronoi tessellation for two types of grain size distributions. One type is grains of relatively similar sizes; the other is grains of random sizes. We found that the pseudo Hall-Petch effect and the reverse Hall-Petch effect of tensile strength were consistently shown for the two different models. We suspect that this result comes from the different crack paths, which are related to the grain patterns in the models.

Establishment of Fundamental Process Conditions on Properties of Magnesium Alloy Thin Plates Fabricated by the Melt Drag Method (용융드래그방법으로 제작한 마그네슘합금 박판의 특성에 미치는 기본적인 공정조건 확립)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.7
    • /
    • pp.326-331
    • /
    • 2022
  • AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 ㎛.

PHOTOSENSITIVITY OF HETEROJUNCTION TYPE GRAINS IN CUBIC SILVER HALIDE MICROCRYSTALS

  • Park, In Yeong
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.159-161
    • /
    • 1996
  • Photosensitivity of silver halide emulsion depends on the properties of the microcrystals. Size, shape, grain distribution and chemical composition as well as the inner structure or the topography of the latent image specks affect on the optical properties and play an important role in the photographic process. In the present paper, a study on the sensitization of emulsion containing AgBrClI core/shell grains showed that for the given size, shape, halide content and crystal habit, under the optimal conditions the photosensitivity of the heterojunction type grains are different from that of the common regular grains. The optimal photosensitivity was obtained at the iodide content of 2.0 mo1%.

  • PDF

Studies on Grain Size Refinement for Rheocasting of Hypereutectic Al-18% Si by Using Sieve Type Mechanical Stirrer (과공정 Al-18% Si 합금의 레올로지 성형시 기계적 교반을 이용한 입자 미세화 연구)

  • 강용기;박진욱;강성수;강충길;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.389-394
    • /
    • 2000
  • The studies on gram size refinement for rheocast processing of hypereutectic Al-18%Si alloys have been investigated in the present study. To increase the efficiency of mechanical stirring, sieve type stirrer are newly designed and implemented for rheocasting of hypereutectic Al-18%Si alloy. Mechanical stirring of semi-solid slurry by using sieve type mechanical stirrer results in morphological changes of the primary Si particles, from angular rod shape to near spherical shape and uniform distribution of proeutectic Si. The remarkable spheroidization of Primary Si Particles and distributional uniformity of proeutectic Si show well the efficiency of sieve type mechanical stirring method which can accelerate the coalescence-fracture-wear of the individual particles by strong turbulent flow between lattices during rotation of sieve type stirrer.

  • PDF

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

Development of Transverse Bed Slope Model for Nonuniform Sand Bed at River Bend (만곡부 혼합입경 하상횡경사 모형의 개발)

  • 최종인;고재웅
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.177-186
    • /
    • 1996
  • The analytical approach to determine transverse sand bed slope at river bend are based on two phases that the flow is considered as fully developed flow and the bed is fluvial having bed load. All existing methods are theoretically derived from the initiation of motion of the particles at river bed. They assume that the Shields parameter has a constant value of 0.06. In this study, the variability of Shields parameter due to the differences of shape of grain size distribution is considered. Therefore the parameter is not a constant, 0.06, but depends on the shape of the grain size distribution. This result gives good agreement to estimate transverse bed slope with actual field data at river bend.

  • PDF

Analysis of size distribution of riverbed gravel through digital image processing (영상 처리에 의한 하상자갈의 입도분포 분석)

  • Yu, Kwonkyu;Cho, Woosung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.493-503
    • /
    • 2019
  • This study presents a new method of estimating the size distribution of river bed gravel through image processing. The analysis was done in two steps; first the individual grain images were analyzed and then the grain particle segmentation of river-bed images were processed. In the first part of the analysis, the relationships (long axes, intermediate axes and projective areas) between grain features from images and those measured were compared. For this analysis, 240 gravel particles were collected at three river stations. All particles were measured with vernier calipers and weighed with scales. The measured data showed that river gravel had shape factors of 0.514~0.585. It was found that the weight of gravel had a stronger correlation with the projective areas than the long or intermediate axes. Using these results, we were able to establish an area-weight formula. In the second step, we calculated the projective areas of the river-bed gravels by detecting their edge lines using the ImageJ program. The projective areas of the gravels were converted to the grain-size distribution using the formula previously established. The proposed method was applied to 3 small- and medium- sized rivers in Korea. Comparisons of the analyzed size distributions with those measured showed that the proposed method could estimate the median diameter within a fair error range. However, the estimated distributions showed a slight deviation from the observed value, which is something that needs improvement in the future.

Analysis on Particle Shape Characteristics of Jumunjin Sand using Fourier Descriptor (Fourier descriptor를 이용한 주문진표준사의 형상특성분석)

  • Min, Tuk-Ki;Kim, Seong-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1182-1189
    • /
    • 2010
  • The mechanical behavior of a granular material is governed by the applying effective stresses and its skeletal structure which is considered to be the packing of particles giving overall density and degree of anisotropic. Factors that affect soil packing are the particle size, size distribution and shape, and the arrangement of grain contact. Soil particle size and shape are the most important factor, but difficult to quantify. In this study, 2D Fourier analysis is applied to quantify the shape of granular particles. Jumunjin sand was used in the experiment and particle images are captured using an optical microscope. The results showed that three lower order Fourier descriptor are closely related with roundness, sphericity of the granular particle. Also statistical approach is used to determine roundness, form factor, elongation ratio, roughness of Jumunjin sand.

  • PDF

Investigation of Segregation Behavior in the Riser/Castings Junction of Heavy-section Steel Castings (대형주강 압탕부의 편석거동 고찰)

  • Kim, Ji-Tae;Park, Heung-Il;Kim, Woo-Yeol;Lee, Byung-Woo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.130-136
    • /
    • 2010
  • Sulfide segregation behavior, characteristics of solidification microstructure and compositional distribution in the riser/castings junction of heavy-section main bearing support (MBS) steel castings were investigated; Sulfide streaks of A segregation were formed in the transitional region from columnar grain to coarse equiaxed grain and floated with aggregation of the dendritic free crystal. Solute segregation behaviors of elements Si, P and S were V shape negative segregation from the bottom of the castings to upper part of the riser with the reference of vertical center-line of the specimen block. Those of elements C and Mn were V shape negative segregation in the main body and A shape positive segregation in the riser of the casting. Just beneath the pipe shrinkage in the riser segregation ratio of each element was the highest, and that of S was 3.6 times higher, C 3.3 times, P 2.1 times, Si 1.6 times and Mn 1.0 times respectively. [Mn/S] ratio of the specimen block was distributed in the wide range of 20~275.