• Title/Summary/Keyword: Distribution of Resources

Search Result 4,428, Processing Time 0.029 seconds

Northern distribution limits and future suitable habitats of warm temperate evergreen broad-leaved tree species designated as climate-sensitive biological indicator species in South Korea

  • Sookyung, Shin;Jung-Hyun, Kim;Duhee, Kang;Jin-Seok, Kim;Hong Gu, Kang;Hyun-Do, Jang;Jongsung, Lee;Jeong Eun, Han;Hyun Kyung, Oh
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.292-303
    • /
    • 2022
  • Background: Climate change significantly influences the geographical distribution of plant species worldwide. Selecting indicator species allows for better-informed and more effective ecosystem management in response to climate change. The Korean Peninsula is the northernmost distribution zone of warm temperate evergreen broad-leaved (WTEB) species in Northeast Asia. Considering the ecological value of these species, we evaluated the current distribution range and future suitable habitat for 13 WTEB tree species designated as climate-sensitive biological indicator species. Results: Up-to-date and accurate WTEB species distribution maps were constructed using herbarium specimens and citizen science data from the Korea Biodiversity Observation Network. Current northern limits for several species have shifted to higher latitudes compared to previous records. For example, the northern latitude limit for Stauntonia hexaphylla is higher (37° 02' N, Deokjeokdo archipelago) than that reported previously (36° 13' N). The minimum temperature of the coldest month (Bio6) is the major factor influencing species distribution. Under future climate change scenarios, suitable habitats are predicted to expand toward higher latitudes inland and along the western coastal areas. Conclusions: Our results support the suitability of WTEB trees as significant biological indicators of species' responses to warming. The findings also suggest the need for consistent monitoring of species distribution shifts. This study provides an important baseline dataset for future monitoring and management of indicator species' responses to changing climate conditions in South Korea.

Analysis on the evolution of water resources situation in Qiandao Lake Basin from 1960 to 2020

  • DU Junkai;Qiu Yaqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.27-27
    • /
    • 2023
  • To analyze the evolution of water resources in Qiandao Lake Basin under the condition of climate change, a WEP-L distributed hydrological model was established to simulate the water cycle process in the basin during 1960-2020. The Mann-Kendall non-parametric test method and Hurst index method were used to analyze the inter-annual variation and annual distribution characteristics of the total water resources in the basin. The multi-scale temporal and spatial distribution and evolution trend of water resources in Qiandao Lake Basin were evaluated. The results show that: (1) The WEP-L model has good simulation results in the Qiandao Lake basin, and the Nash coefficient rate is above 0.83 in the periodic period and above 0.85 in the verification period. (2) The water yield coefficient of the whole basin ranges from 0.436 to 0.630. The annual average total water resource is 12.25 billion m3, equivalent to 1176.4mm of water depth. The annual distribution process shows a unimodal structure, and the water depth of each sub-basin ranges from 742 mm to 1266 mm, and the spatial distribution is higher in the west and lower in the east. (3) The annual water resources series in the basin showed an insignificant upward trend, and the Hurst index was 0.86, indicating a continuous upward trend. From the perspective of monthly water resources, January and February increased significantly, the other months were not significant changes.

  • PDF

Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea

  • Shin, Sookyung;Kim, Jung-Hyun;Dang, Ji-Hee;Seo, In-Soon;Lee, Byoung Yoon
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2021
  • The climate is changing rapidly, and this may pose a major threat to global biodiversity. One of the most distinctive consequences of climate change is the poleward and/or upward shift of species distribution ranges associated with increasing temperatures, resulting in a change of species composition and community structure in the forest ecosystems. The Baekdudaegan mountain range connects most forests from the lowland to the subalpine zone in South Korea and is therefore recognized as one of the most important biodiversity hotspots. This study was conducted to understand the distribution range of vascular plants along elevational gradients through field surveys in the six national parks of the Baekdudaegan mountain range. We identified the upper and lower distribution limits of a total of 873 taxa of vascular plants with 117 families, 418 genera, 793 species, 14 subspecies, 62 varieties, two forms, and two hybrids. A total of 12 conifers were recorded along the elevational gradient. The distribution ranges of Abies koreana, Picea jezoensis, Pinus pumila, and Thuja koraiensis were limited to over 1000 m above sea level. We also identified 21 broad-leaved trees in the subalpine zone. A total of 45 Korean endemic plant species were observed, and of these, 15 taxa (including Aconitum chiisanense and Hanabusaya asiatica) showed a narrow distribution range in the subalpine zone. Our study provides valuable information on the current elevational distribution ranges of vascular plants in the six national parks of South Korea, which could serve as a baseline for vertical shifts under future climate change.

Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea

  • Shin, Sookyung;Jung, Kwang Soo;Kang, Hong Gu;Dang, Ji-Hee;Kang, Doohee;Han, Jeong Eun;Kim, Jin Han
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.313-327
    • /
    • 2021
  • Background: Citizen science is becoming a mainstream approach of baseline data collection to monitor biodiversity and climate change. Dragonflies (Odonata) have been ranked as the highest priority group in biodiversity monitoring for global warming. Ischnura senegalensis Rambur has been designated a biological indicator of climate change and is being monitored by the citizen science project "Korean Biodiversity Observation Network." This study has been performed to understand changes in the distribution range of I. senegalensis in response to climate change using citizen science data in South Korea. Results: We constructed a dataset of 397 distribution records for I. senegalensis, ranging from 1980 to 2020. The number of records sharply increased over time and space, and in particular, citizen science monitoring data accounted for the greatest proportion (58.7%) and covered the widest geographical range. This species was only distributed in the southern provinces until 2010 but was recorded in the higher latitudes such as Gangwon-do, Incheon, Seoul, and Gyeonggi-do (max. Paju-si, 37.70° latitude) by 2020. A species distribution model showed that the annual mean temperature (Bio1; 63.2%) and the maximum temperature of the warmest month (Bio5; 16.7%) were the most critical factors influencing its distribution. Future climate change scenarios have predicted an increase in suitable habitats for this species. Conclusions: This study is the first to show the northward expansion in the distribution range of I. senegalensis in response to climate warming in South Korea over the past 40 years. In particular, citizen science was crucial in supplying critical baseline data to detect the distribution change toward higher latitudes. Our results provide new insights on the value of citizen science as a tool for detecting the impact of climate change on ecosystems in South Korea.

Increasing Hosting Capacity of Distribution Feeders by Analysis of Generation and Consumption (배전선로 부하량 및 발전량 분석을 통한 신재생 접속허용용량 기준 상향에 대한 연구)

  • Kim, Seong-Man
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.295-309
    • /
    • 2019
  • This paper demonstrates that the verification and analysis of the increase of hosting capacity of distributed energy resources in distribution system for the high penetration of distributed energy resources. In the case of generally designed distribution feeders in South Korea, it can host up to 10 MVA of distributed energy resources and the over voltage due to reverse power flow is prohibited beyond the range by the law of electric utility. However, it should take into consideration that there are some factors of extra hosting capacity such as generation characteristics of distributed energy resources and minimum loads that always exist to distribution system. For these reason, we choose a specific distribution system hosted 10 MVA of distributed energy resources monitored by distribution system operator and verify the impact of increasing hosting capacity such as power flow and voltage profile of distribution system. By the result, we could find that it is possible to increase the hosting capacity and define the factors to expand the hosting capacity of distributed energy resources in distribution system.

Development of a New Islanding Detection Method for Distributed Resources (분산 전원의 고립 운전 검출 기법의 개발)

  • Jang, Seong-Il;Kim, Gwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.506-513
    • /
    • 2001
  • The islanding detection for distributed resources (DR) becomes an important and emerging issue in power system protection since the distributed generator installations are rapidly increasing and most of the installed systems are interconnected with distribution network. In order to avoid the negative impacts from islanding operations of DR on protection, operation and management of distribution system, it is necessary to effectively detect the islanding operations of DR and rapidly disconnect it from distribution network. Generally, it is difficult to detect islanding operation by monitoring only one system parameter This paper presents a new logic based islanding detection method for distributed resources(DR) which are interconnected with distribution network. The proposed method detects the islanding operation by monitoring four system parameter: voltage variation, phase displacement, frequency variation, and the variation of total harmonic distortion(THD) of current; therefore, it effectively detects island operation of DR unit operating in parallel with the distribution network. We also verified the efficiency of the proposed algorithm using the radial distribution network of IEEE 34 bus model.

  • PDF

Earth Resistivity Modelling and Grounding Resistance Estimation for Yongdam Dam Power Station Grounding Design (용담댐 발전소 접지설계를 위한 대지비저항 모델링 및 접지저항 추정)

  • Oh, Min-Hwan;Kim, Hyoung-Soo;Kim, Jong-Deug
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1188-1191
    • /
    • 1998
  • Detailed estimation of subsurface resistivity distribution and accurate estimation of actual fault current coming into the grounding system are indispensible to optimun grounding system design. Especially, it is essential for efficient grounding design to estimate subsurface resistivity distribution quantitatively and logically. Accurate estimation of subsurface resistivity distribution has an absolute influence on calculating touch voltage, step voltage and ground potential rise (GPR) which are related with grounding design standard for human safety. In this study, thirty-three electrical sounding surveys were made in Yongdam Power Station to obtain detailed subsurface resistivity distribution and the sounding data were interpreted quantitatively using multi-layered model. The results of the quantitative resistivity models were adopted practically to calculate grounding resistance values. Analytical asymptotic equations and CDEGS program were used in grounding resistance calculation and the results were compared and reviewed in the study.

  • PDF

Predicting the potential distribution of the subalpine broad-leaved tree species, Betula ermanii Cham. under climate change in South Korea

  • Shin, Sookyung;Dang, Ji-Hee;Kim, Jung-Hyun;Han, Jeong Eun
    • Journal of Species Research
    • /
    • v.10 no.3
    • /
    • pp.246-254
    • /
    • 2021
  • Subalpine and alpine ecosystems are especially vulnerable to temperature increases. Betula ermanii Cham. (Betulaceae) is a dominant broad-leaved tree species in the subalpine zone and is designated as a 'Climate-sensitive Biological Indicator Species' in South Korea. This study aimed to predict the potential distribution of B. ermanii under current and future climate conditions in South Korea using the MaxEnt model. The species distribution models showed an excellent fit (AUC=0.99). Among the climatic variables, the most critical factors shaping B. ermanii distribution were identified as the maximum temperature of warmest month (Bio5; 64.8%) and annual mean temperature (Bio1; 20.3%). Current potential habitats were predicted in the Baekdudaegan mountain range and Mt. Hallasan, and the area of suitable habitat was 1531.52 km2, covering 1.57% of the Korean Peninsula. With global warming, future climate scenarios have predicted a decrease in the suitable habitats for B. ermanii. Under RCP8.5-2070s, in particular, habitat with high potential was predicted only in several small areas in Gangwon-do, and the total area suitable for the species decreased by up to 97.3% compared to the current range. We conclude that the dominant factor affecting the distribution of B. ermanii is temperature and that future temperature rises will increase the vulnerability of this species.

A new distribution record of Sedum kiangnanense (Crassulaceae) in Korea

  • SUH, Hwa-Jung;KIM, Jung-Hyun;CHOI, Ji-Eun;LEE, Wunggi;KIM, Jin-Seok;KIM, Sangtae
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.2
    • /
    • pp.247-251
    • /
    • 2020
  • We report a new distribution of Sedum kiangnanense D. Q. Wang & Z. F. Wu on the Korean Peninsula. This species was first reported in China and is distributed in Anhui and Zhejiang provinces. We found this species on Hongdo Island in Heuksan-myeon, Shinan-gun, Jeollanam-do in the Republic of Korea. S. kiangnanense is well distinguished from other species in Korea by 4- or 5-verticillate leaves on the sterile stems and a spatulate leaf shape. We provide its morphological description, detailed illustrations, and a key to related taxa. We have given this species a new Korean name, Ip-kkot-dol-na-mul, which means flower-like leaved sedum.

Analysis of the Regional Inequalities of Renewable Energy Resources using Gini's Coefficients (지니계수를 이용한 시군구별 신재생에너지 자원의 불균등성 분석)

  • Lee, Jimin
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.109-119
    • /
    • 2016
  • Most of countries are trying to increase the supply of renewable energy as the substitute of the fossil energy for reducing greenhouse gas emissions. However, renewable energy sources account for only about 3.86% of the total Korea primary energy supply. To increase the rate of renewable energy in Korea's energy consumption, various policies for expanding the use of renewable energy should be applied. Also these policies should be consider renewable energy resources distribution and regional inequality. In this study, the potentials of photovoltaic, wind power and bioenergy from rice straw, livestock waste and food waste are calculated and the distribution characteristic and regional inequalities are analyzed using Gini's coefficient and Gini decomposition method. As the results, technical potentials of photovoltaic and wind power of city region(Gu) has more potential rate than theoretical potentials. Livestock waste has the most unequal distribution (Gini's coefficient: 0.617) among renewable resources.