Browse > Article
http://dx.doi.org/10.1186/s41610-021-00209-7

Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea  

Shin, Sookyung (Department of Biological Resources Utilization, National Institute of Biological Resources)
Jung, Kwang Soo (Odonata Society of Korea)
Kang, Hong Gu (NATURING)
Dang, Ji-Hee (Department of Biological Resources Utilization, National Institute of Biological Resources)
Kang, Doohee (Department of Biological Resources Utilization, National Institute of Biological Resources)
Han, Jeong Eun (Department of Biological Resources Utilization, National Institute of Biological Resources)
Kim, Jin Han (Department of Biological Resources Utilization, National Institute of Biological Resources)
Publication Information
Journal of Ecology and Environment / v.45, no.4, 2021 , pp. 313-327 More about this Journal
Abstract
Background: Citizen science is becoming a mainstream approach of baseline data collection to monitor biodiversity and climate change. Dragonflies (Odonata) have been ranked as the highest priority group in biodiversity monitoring for global warming. Ischnura senegalensis Rambur has been designated a biological indicator of climate change and is being monitored by the citizen science project "Korean Biodiversity Observation Network." This study has been performed to understand changes in the distribution range of I. senegalensis in response to climate change using citizen science data in South Korea. Results: We constructed a dataset of 397 distribution records for I. senegalensis, ranging from 1980 to 2020. The number of records sharply increased over time and space, and in particular, citizen science monitoring data accounted for the greatest proportion (58.7%) and covered the widest geographical range. This species was only distributed in the southern provinces until 2010 but was recorded in the higher latitudes such as Gangwon-do, Incheon, Seoul, and Gyeonggi-do (max. Paju-si, 37.70° latitude) by 2020. A species distribution model showed that the annual mean temperature (Bio1; 63.2%) and the maximum temperature of the warmest month (Bio5; 16.7%) were the most critical factors influencing its distribution. Future climate change scenarios have predicted an increase in suitable habitats for this species. Conclusions: This study is the first to show the northward expansion in the distribution range of I. senegalensis in response to climate warming in South Korea over the past 40 years. In particular, citizen science was crucial in supplying critical baseline data to detect the distribution change toward higher latitudes. Our results provide new insights on the value of citizen science as a tool for detecting the impact of climate change on ecosystems in South Korea.
Keywords
Citizen science; Climate-sensitive biological indicator species; Global warming; Ischnura senegalensis; Korean Biodiversity Observation Network; Northward shifts; Species distribution model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3-4):231-59. https://doi.org/10.1016/j.ecolmodel.2005.03.026.   DOI
2 Pocock MJO, Chandler M, Bonney R, Thornhill I, Albin A, August T, et al. Chapter Six-a vision for global biodiversity monitoring with citizen science. Adv in Ecol Res. 2018. https://doi.org/10.1016/bs.aecr.2018.06.003.   DOI
3 Jung KS. Odonata of Korea. Seoul: Ilgongyuksa; 2007.
4 Kim MJ, Lee H, Ban YG, Lee SD, Kim DE. Prediction of changes in habitat distribution of the alfalfa weevil (Hypera postica) using RCP climate change scenarios. Korean J Appl Entomol. 2018;2018. https://doi.org/10.5656/KSAE.2018.01.1.056.   DOI
5 van Vuuren DPV, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Chan. 2011;109(1-2):5-31. https://doi.org/10.1007/s10584-011-0148-z.   DOI
6 Ribera I, Vogler AP. Habitat type as a determinant of species range sizes: the example of lotic-lentic differences in aquatic Coleoptera. Biol J Linn Soc. 2000;71(1):33-52. https://doi.org/10.1111/j.1095-8312.2000.tb01240.x.   DOI
7 Kim Y, Shim KM, Jung MP, Choi IT, Kang KK. Study on the change of climate zone in South Korea by the climate change scenarios. Kor J Agric For Meteorol. 2017. https://doi.org/10.5532/KJAFM.2017.19.2.37.   DOI
8 Kwon TS, Lee CM, Kim SS. Northward range shifts in Korean butterflies. Clim Chan. 2014;126(1-2):163-74. https://doi.org/10.1007/s10584-014-1212-2.   DOI
9 Dickinson JL, Shirk J, Bonter D, Bonney R, Crain RL, Martin J, et al. The current state of citizen science as a tool for ecological research and public engagement. Front Ecol Environ. 2012;10(6):291-7. https://doi.org/10.1890/110236.   DOI
10 Lobo JM, Jimenez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr. 2008;17(2):145-51. https://doi.org/10.1111/j.1466-8238.2007.00358.x.   DOI
11 Lee BY, Nam GH, Yun JH, Cho GY, Lee JS, Kim J-H, et al. Biological indicators to monitor responses against climate change in Korea. Korean J Pl Taxon. 2010;40(4):202-7. https://doi.org/10.11110/kjpt.2010.40.4.202.   DOI
12 Lee C-M, Kwon TS, Ji OY, Kim SS, Park GE, Lim JH. Prediction of abundance of forest flies (Diptera) according to climate scenarios RCP 4.5 and RCP 8.5 in South Korea. J Asia Pac Biodivers. 2015. https://doi.org/10.1016/j.japb.2015.10.009.   DOI
13 Lee S, Jeon H, Kim M. Spatial distribution of butterflies in accordance with climate change in the Korean peninsula. Sustainability. 2020. https://doi.org/10.3390/su12051995.   DOI
14 Roy-Dufresne E, Saltre F, Cooke BD, Mellin C, Mutze G, Cox T, et al. Modeling the distribution of a wide-ranging invasive species using the sampling efforts of expert and citizen scientists. Ecol Evol. 2019;9(19):11053-63. https://doi.org/10.1002/ece3.5609.   DOI
15 Shin S, Kim JH, Dang JH, Seo IS, Lee BY. Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea. J Ecol Environ. 2021;45(1). https://doi.org/10.1186/s41610-021-00182-1.   DOI
16 Silvertown J. A new dawn for citizen science. Trends Ecol Evol. 2009;24(9):467-71. https://doi.org/10.1016/j.tree.2009.03.017.   DOI
17 La Sorte FA, Lepczyk CA, Burnett JL, Hurlbert AH, Tingley MW, Zuckerberg B. Opportunities and challenges for big data ornithology. Condor. 2018;120(2):414-26. https://doi.org/10.1650/CONDOR-17-206.1.   DOI
18 Leach K, Montgomery WI, Reid N. Modelling the influence of biotic factors on species distribution patterns. Ecol Model. 2016;337:96-106. https://doi.org/10.1016/j.ecolmodel.2016.06.008.   DOI
19 National Institute of Biological Resources. Operation of the Korea biodiversity observation network (K-BON) with civil participation II-1. Incheon: National Institute of Biological Resources; 2017.
20 Lewandowski EJ, Oberhauser KS. Butterfly citizen scientists in the United States increase their engagement in conservation. Biol Conserv. 2017. https://doi.org/10.1016/j.biocon.2015.07.029.   DOI
21 Cerini F, Stellati L, Luiselli L, Vignoli L. Long-term shifts in the communities of Odonata: effect of chance or climate change? North-West J Zool. 2020;16:1-6.
22 Aceves-Bueno E, Adeleye AS, Feraud M, Huang Y, Tao M, Yang Y, et al. The accuracy of citizen science data. Bull Ecol Soc Am. 2017;98(4):278-90. https://doi.org/10.1002/bes2.1336.   DOI
23 Askew RR. The dragonflies of Europe. Colchester: Harley Books; 2004. https://doi.org/10.1163/9789004474383.   DOI
24 Bird TJ, Bates AE, Lefcheck JS, Hill NA, Thomson RJ, Edgar GJ, et al. Statistical solutions for error and bias in global citizen science datasets. Biol Conserv. 2014;173:144-54. https://doi.org/10.1016/j.biocon.2013.07.037.   DOI
25 Cox J, Oh EY, Simmons B, Lintott C, Masters K, Greenhill A, et al. Defining and measuring success in online citizen science: a case study of zooniverse projects. Comput Sci Eng. 2015;17(4):28-41. https://doi.org/10.1109/MCSE.2015.65.   DOI
26 Fuccillo KK, Crimmins TM, de Rivera CE, Elder TS. Assessing accuracy in citizen science-based plant phenology monitoring. Int J Biometeorol. 2014;59(7):917-26. https://doi.org/10.1007/s00484-014-0892-7.   DOI
27 Hassall C, Thompson DJ. The effects of environmental warming on Odonata: a review. Int J Odonatol. 2008;11(2):131-53. https://doi.org/10.1080/13887890.2008.9748319.   DOI
28 Hickling R, Roy DB, Hill JK, Thomas CD. A northward shift of range margins in British Odonata. Glob Chang Biol. 2005;11(3):502-6. https://doi.org/10.1111/j.1365-2486.2005.00904.x.   DOI
29 Ishida S. Insects' Life in Japan. Vol. 2. Dragonflies. Tokyo: Hoikusha; 1969.
30 Baker DJ, Hartley AJ, Butchart SHM, Willis SG. Choice of baseline climate data impacts projected species' responses to climate change. Glob Chan Biol. 2016;22(7):2392-404. https://doi.org/10.1111/gcb.13273.   DOI
31 Suhling F, Suhling I, Richter O. Temperature response of growth of larval Dragonflies-an overview. Int J Odonatol. 2015;18(1):15-30. https://doi.org/10.1080/13887890.2015.1009392.   DOI
32 Yum JH. Systematics of the Zygoptera (Odonata , Insecta) in Kore. Seoul: MS Thesis. Seoul Women's University; 2000.
33 National Institute of Biological Resources. Operation of the Korea biodiversity observation network (K-BON) with civil participation (2020). Incheon: National Institute of Biological Resources; 2020.
34 Suzuki-Ohno Y, Yokoyama J, Nakashizuka T, Kawata M. Utilization of photographs taken by citizens for estimating bumblebee distributions. Sci Rep. 2017;7(1):11215. https://doi.org/10.1038/s41598-017-10581-x.   DOI
35 Termaat T, van Strien AJ, van Grunsven RHA, Knijf GD, Bjelke U, Burbach K, et al. Distribution trends of European dragonflies under climate change. Divers Distrib. 2019;25(6):936-50. https://doi.org/10.1111/ddi.12913.   DOI
36 Urban MC, Bocedi G, Hendry AP, Mihoub JB, Pe'er G, Singer A, et al. Improving the forecast for biodiversity under climate change. Science. 2016;353(6304). https://doi.org/10.1126/science.aad8466.   DOI
37 VanDerWal J, Murphy HT, Kutt AS, Perkins GC, Bateman BL, Perry JJ, et al. Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change. Nat Clim Chang. 2012;3(3):239-43. https://doi.org/10.1038/nclimate1688.   DOI
38 National Institute of Meteorological Sciences. Global climate change forecast report. Jeju-do: National Institute of Meteorological Sciences; 2019.
39 Moon J, Shim C, Jung OJ, Hong J-W, Han J, Song Y-I. Characteristics in regional climate change over South Korea for regional climate policy measures: based on long-term observations. J Clim Chan Res. 2020;11(6-2):755-70. https://doi.org/10.15531/KSCCR.2020.11.6.755.   DOI
40 Thapa A, Wu R, Hu Y, Nie Y, Singh PB, Khatiwada JR, et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol Evol. 2018;8(21):10542-54. https://doi.org/10.1002/ece3.4526.   DOI
41 Park CY, Choi YE, Kwon YA, Kwon JI, Lee HS. Studies on changes and future projections of subtropical climate zones and extreme temperature events over South Korea using high resolution climate change scenario based on PRIDE model. J Kor Assoc Reg Geogr. 2013;19:600-14.
42 Pecl GT, Stuart-Smith J, Walsh P, Bray DJ, Martha K, Burgess M, et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front Mar Sci. 2019;6. https://doi.org/10.3389/fmars.2019.00349.   DOI
43 Rapacciuolo G, Ball-Damerow JE, Zeilinger AR, Resh VH. Detecting long-term occupancy changes in Californian Odonates from natural history and citizen science records. Biodivers Conserv. 2017;26(12):2933-49. https://doi.org/10.1007/s10531-017-1399-4.   DOI
44 Yum JW, Lee HY, Bae YJ. Taxonomic review of the Korean Zygoptera (Odonata). Bull Entomol Res. 2010;26:41-55.
45 Sharma G, Clausnitzer V. Ischnura senegalensis. The IUCN red list of threatened species 2016: e.T59897A75436136.0; 2016. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T59897A75436136.en. Accessed 09 Sept 2020   DOI
46 Wang Y, Casajus N, Buddlle C, Berteaux D, Larrivee M. Predicting the distribution of poorly documented species, Northern black widow (Latrodectus variolus) and Black purse-web spider (Sphodros niger), using museum specimens and citizen science data. PLoS ONE. 2018;13(8):e0201094. https://doi.org/10.1371/journal.pone.0201094.   DOI
47 Wiens JJ. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biology. 2016;14(12):e2001104. https://doi.org/10.1371/journal.pbio.2001104.   DOI
48 Corbet PS. Are Odonata useful as bioindicators? Libellula. 1993;12:91-102.
49 Adhikari P, Jeon J-Y, Kim HW, Oh H-S. Northward range expansion of southern butterflies according to climate change in South Korea. J Clim Chang Res. 2020;11(6-1):643-56. https://doi.org/10.15531/KSCCR.2020.11.6.643.   DOI
50 Balzan MV. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatiotemporal approach. J Insect Sci. 2012;12(87):1-18. https://doi.org/10.1673/031.012.8701.   DOI
51 Kim CH, Kang JH, Kim M. Status and development of National Ecosystem Survey in Korea. J Environ Impact Assess. 2013;22(6):725-38. https://doi.org/10.14249/eia.2013.22.6.725.   DOI
52 Fourcade Y, Engler JO, Rodder D, Secondi J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE. 2014;9(5):e97122. https://doi.org/10.1371/journal.pone.0097122.   DOI
53 Grewe Y, Hof C, Dehling DM, Brandl R, Brandle M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob Ecol Biogeogr. 2013;22(4):403-9. https://doi.org/10.1111/geb.12004.   DOI
54 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965-78. https://doi.org/10.1002/joc.1276.   DOI
55 Kwon JM. The distribution of Lycaenid species in Korea according to climate factors. MS Thesis. Yeungnam University, Daegu-si, Korea; 2012.
56 Lancaster LT, Dudaniec RY, Hansson B, Svensson EI. Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. J Biogeogr. 2015;42(10):1953-63. https://doi.org/10.1111/jbi.12553.   DOI
57 Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. The velocity of climate change. Nature. 2009;462(7276):1052-5. https://doi.org/10.1038/nature08649.   DOI
58 Moore MP, Hersch K, Sricharoen C, Lee S, Reice C, Rice P, et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. PNAS. 2021;118(28):e2101458118. https://doi.org/10.1073/pnas.2101458118.   DOI
59 Ozana S, Burda M, Hykel M, Malina M, Prasek M, Barta D, et al. Dragonfly Hunter CZ: mobile application for biological species recognition in citizen science. PLoS ONE. 2019;14(1):e0210370. https://doi.org/10.1371/journal.pone.0210370.   DOI
60 National Institute of Biological Resources. The Guidebook of Climate Sensitive Biological Indicator Species. Seoul: Goryeo C&P; 2019.
61 Pacifici M, Foden W, Visconti P, et al. Assessing species vulnerability to climate change. Nat Clim Chang. 2019. https://doi.org/10.1038/nclimate2448.   DOI
62 Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37-42. https://doi.org/10.1038/nature01286.   DOI