Browse > Article
http://dx.doi.org/10.5141/jee.22.053

Northern distribution limits and future suitable habitats of warm temperate evergreen broad-leaved tree species designated as climate-sensitive biological indicator species in South Korea  

Sookyung, Shin (Department of Biological Resources Research, National Institute of Biological Resources)
Jung-Hyun, Kim (Korean Plant Diversity Institute)
Duhee, Kang (Department of Biological Resources Research, National Institute of Biological Resources)
Jin-Seok, Kim (Korean Plant Diversity Institute)
Hong Gu, Kang (NATURING)
Hyun-Do, Jang (Department of Biological Resources Research, National Institute of Biological Resources)
Jongsung, Lee (Department of Biological Resources Research, National Institute of Biological Resources)
Jeong Eun, Han (Department of Biological Resources Research, National Institute of Biological Resources)
Hyun Kyung, Oh (Department of Biological Resources Research, National Institute of Biological Resources)
Publication Information
Journal of Ecology and Environment / v.46, no.4, 2022 , pp. 292-303 More about this Journal
Abstract
Background: Climate change significantly influences the geographical distribution of plant species worldwide. Selecting indicator species allows for better-informed and more effective ecosystem management in response to climate change. The Korean Peninsula is the northernmost distribution zone of warm temperate evergreen broad-leaved (WTEB) species in Northeast Asia. Considering the ecological value of these species, we evaluated the current distribution range and future suitable habitat for 13 WTEB tree species designated as climate-sensitive biological indicator species. Results: Up-to-date and accurate WTEB species distribution maps were constructed using herbarium specimens and citizen science data from the Korea Biodiversity Observation Network. Current northern limits for several species have shifted to higher latitudes compared to previous records. For example, the northern latitude limit for Stauntonia hexaphylla is higher (37° 02' N, Deokjeokdo archipelago) than that reported previously (36° 13' N). The minimum temperature of the coldest month (Bio6) is the major factor influencing species distribution. Under future climate change scenarios, suitable habitats are predicted to expand toward higher latitudes inland and along the western coastal areas. Conclusions: Our results support the suitability of WTEB trees as significant biological indicators of species' responses to warming. The findings also suggest the need for consistent monitoring of species distribution shifts. This study provides an important baseline dataset for future monitoring and management of indicator species' responses to changing climate conditions in South Korea.
Keywords
climate change; habitat suitability; Korean Biodiversity Observation Network; northward shift; species distribution model;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Kelly AE, Goulden ML. Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci U S A. 2008;105(33):11823-6. https://doi.org/10.1073/pnas.0802891105.   DOI
2 Kim ES, Lee JS, Park GE, Lim JH. Change of subalpine coniferous forest area over the last 20 years. J Korean Soc For Sci. 2019;108(1):10-20. https://doi.org/10.14578/jkfs.2019.108.1.10.   DOI
3 Kim JH, Yun JH, Nam GH, Lee JH, Choi BH, Lee BY. A study on vascular plants of uninhabited islands in the Deokjeok archipelago. J Environ Sci. 2011;20(1):1-23. https://doi.org/10.5322/JES.2011.20.1.1.   DOI
4 Kong WS. Biogeography of Korean plants. Seoul: GEOBOOK; 2007.
5 Koo KA, Kong WS, Kim CK. Distribution of evergreen broad-leaved plants and climatic factors. J Korean Geogr Soc. 2001;36(3):247-57.
6 Koo KA, Park SU, Hong S, Jang I, Seo C. Future distributions of warm-adapted evergreen trees, Neolitsea sericea and Camellia japonica under climate change: ensemble forecasts and predictive uncertainty. Ecol Res. 2018;33(2):313-25. https://doi.org/10.1007/s11284-017-1535-3.   DOI
7 Leach K, Montgomery WI, Reid N. Modelling the influence of biotic factors on species distribution patterns. Ecol Model. 2016;337:96-106. https://doi.org/10.1016/j.ecolmodel.2016.06.008.   DOI
8 Lee BY, Nam GH, Yun JH, Cho GY, Lee JS, Kim JH, et al. Biological indicators to monitor responses against climate change in Korea. Korean J Plant Taxon. 2010;40(4):202-7. https://doi.org/10.11110/kjpt.2010.40.4.202.   DOI
9 Lee JH, Choi BH. Distribution of broad-leveled evergreen plants on islands of Incheon, middle part of Yellow Sea. Korean J Plant Taxon. 2008;38(3):315-32.   DOI
10 Lee JH, Choi BH. Distribution and northernmost limit on the Korean peninsula of three evergreen trees. Korean J Plant Taxon. 2010;40(4):267-73. https://doi.org/10.11110/kjpt.2010.40.4.267.   DOI
11 Liang Q, Xu X, Mao K, Wang M, Wang K, Xi Z, et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J Biogeogr. 2018;45(6):1334-44. https://doi.org/10.1111/jbi.13229.   DOI
12 Moon J, Shim C, Jung OJ, Hong JW, Han J, Song YI. Characteristics in regional climate change over South Korea for regional climate policy measures: based on long-term observations. J Clim Chang Res. 2020;11(6-2):755-70. https://doi.org/10.15531/KSCCR.2020.11.6.755.   DOI
13 National Geographic Information Institute. The national atlas of Korea II . Suwon: National Geographic Information Institute; 2020.
14 National Institute of Biological Resources. Operation of the Korea biodiversity observation network (K-BON) with civil participation II-1. Incheon: National Institute of Biological Resources; 2017.
15 National Institute of Biological Resources. The guidebook of climate sensitive biological indicator species. Seoul: Goryeo C&P; 2019.
16 National Institute of Biological Resources. Operation of the Korea biodiversity observation network (K-BON) with civil participation (2020). Incheon: National Institute of Biological Resources; 2020. 
17 National Institute of Meteorological Sciences. Global climate change forecast report. Jeju: National Institute of Meteorological Sciences; 2019.
18 O'Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Chang. 2014;122:387-400. https://doi.org/10.1007/s10584-013-0905-2.   DOI
19 Park SG, Myeong YJ, Ju SG, Back GS. Range analysis of possible planting of evergreen broad-leaved trees for landscaping in Korea. Proc Korean Soc Environ Ecol Con. 2015b;25(2):114-5.
20 Park J, An J, Park S, Choo G, Kim BG. Vegetation properties of Daphniphyllum macropodum natural habitats in South Korea. J Agric Life Sci. 2015a;49(4):117-33. https://doi.org/10.14397/jals.2015.49.4.117.   DOI
21 Park SU, Koo KA, Seo C, Kong WS. Potential impact of climate change on distribution of Hedera rhombea in the Korean Peninsula. J Clim Chan Res. 2016;7(3):325-34. https://doi.org/10.15531/ksccr.2016.7.3.325.   DOI
22 Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr. 2003;12(5):361-71. https://doi.org/10.1046/j.1466-822X.2003.00042.x.   DOI
23 Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3-4):231-59. https://doi.org/10.1016/j.ecolmodel.2005.03.026.   DOI
24 Shin S, Jung KS, Kang HG, Dang JH, Kang D, Han JE, et al. Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea. J Ecol Environ. 2021a;45:33. https://doi.org/10.1186/s41610-021-00209-7.   DOI
25 Shin S, Kim JH, Dang JH, Seo IS, Lee BY. Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea. J Ecol Environ. 2021b;45:7. https://doi.org/10.1186/s41610-021-00182-1.   DOI
26 Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic. 2016;60:223-30. https://doi.org/10.1016/j.ecolind.2015.06.036.   DOI
27 Uyeki H. On the northern limit of evergreen broad-leaved tree in Korea. Acta Phytotax Geobot. 1941;10(2):80-93.
28 Son DC, Kim HJ, Lee DH, Jung SY, Park SH, Chang KS. Flora of the five west sea islands in Korea. Korean J Plant Res. 2016;29(4):434-66. https://doi.org/10.7732/kjpr.2016.29.4.434.   DOI
29 Song SG, Choi SS, Shin HC, Seo HS, Park JY, Cha JY, et al. A floristic study of uninhabited islands in Incheon and Gyeonggi Province, Korea. J Korean Isl. 2021;33(4):181-226.   DOI
30 Urban MC, Bocedi G, Hendry AP, Mihoub JB, Pe'er G, Singer A, et al. Improving the forecast for biodiversity under climate change. Science. 2016;353(6304):aad8466. https://doi.org/10.1126/science.aad8466.   DOI
31 Williams KD, Copsey D, Blockley EW, Bodas-Salcedo A, Calvert D, Comer R, et al. The Met Office Global Coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J Adv Model Earth Syst. 2017;10(2):357-80. https://doi.org/10.1002/2017MS001115.   DOI
32 Yang JC, Park SH, Ha SG, Lee YM. The flora of vascular plants in Daecheong Island, South Korea. Korean J Plant Res. 2012;25(1):31-47. https://doi.org/10.7732/kjpr.2012.25.1.031.   DOI
33 Yu SB, Kim BD, Shin HT, Kim SJ. Habitat climate characteristics of Lauraceae evergreen broad-leaved trees and distribution change according to climate change. Korean J Environ Ecol. 2020;34(6):503-14. https://doi.org/10.13047/KJEE.2020.34.6.503.   DOI
34 Yun E, Kim JH, Moon KH. Future projection of climatic zone shifts over Korean peninsula under the RCP8.5 scenario using high-definition digital agro-climate maps. Korean J Agric For Meteorol. 2020;22(4): 287-98. https://doi.org/10.5532/KJAFM.2020.22.4.287.   DOI
35 Yun JH, Park JS, Choi JY, Nakao K. Habitat prediction and impact assessment of Eurya japonica Thunb. under Climate Change in Korea. J Environ Impact Assess. 2017;26(5):291-302. https://doi.org/10.14249/eia.2017.26.5.291.   DOI
36 Yun JH, Kim JH, Oh KH, Lee BY. Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean J Environ Ecol. 2011a;25(1):47-56.
37 Yun JH, Nakao K, Kim JH, Kim SY, Park CH, Lee BY. Habitat prediction and impact assessment of Neolitsea sericea (Blume) Koidz. under Climate Change in Korea. J Environ Impact Assess. 2014;23(2):101-11. https://doi.org/10.14249/eia.2014.23.2.101.   DOI
38 Yun JH, Nakao K, Park CH, Lee BY, Oh KH. Change prediction for potential habitats of warm-temperate evergreen broad-leaved trees in Korea by climate change. Korean J Environ Ecol. 2011b;25(4):590-600.
39 Choi BK. Syntaxonomy and syngeography of warm-temperate evergreen broad-leaved forests in Korea [PhD dissertation]. Daegu: Keimyung University; 2013.
40 Andrews MB, Ridley JK, Wood RA, Andrews T, Blockley EW, Booth B, et al. Historical simulations with HadGEM3-GC3.1 for CMIP6. J Adv Model Earth Syst. 2020;12(6):e2019MS001995. https://doi.org/10.1029/2019MS001995.   DOI
41 Cook JA, Ranstam J. Overfitting. Br J Surg. 2016;103(13):1814. https://doi.org/10.1002/bjs.10244.   DOI
42 Cultural Heritage Administration. The white paper of natural monuments. Daejeon: Cultural Heritage Administration; 2003.
43 Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17(1):43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.   DOI
44 Eom B, Kim JW. A phytoclimatic review of warm-temperate vegetation zone of Korea. Korean J Ecol Environ. 2020;53(2):195-207. https://doi.org/10.11614/KSL.2020.53.2.195.   DOI
45 Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302-15. https://doi.org/10.1002/joc.5086.   DOI
46 Franklin J. Species distribution models in conservation biogeography: developments and challenges. Divers Distrib. 2013;19(10):1217-23. https://doi.org/10.1111/ddi.12125.   DOI
47 Ims RA, Yoccoz NG. Ecosystem-based monitoring in the age of rapid climate change and new technologies. Curr Opin Environ Sustain. 2017;29:170-6. https://doi.org/10.1016/j.cosust.2018.01.003.   DOI
48 Kaky E, Nolan V, Alatawi A, Gilbert F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Ecol Inform. 2020;60:101150. https://doi.org/10.1016/j.ecoinf.2020.101150.   DOI