• Title/Summary/Keyword: Distribution Stresses

Search Result 1,006, Processing Time 0.029 seconds

A Mathematical Model of Undertow in the Surf Zone (쇄파대(碎波帶)에서 undertow에 관한 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, Il Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.193-206
    • /
    • 1993
  • An analytical model of undertow is presented in the surf zone. Each term of the derived governing equation is evaluated by the ordering methods. Then the turbulent normal stresses and the streaming velocity terms are neglected. The driving force of undertow is derived from the wave profile which is approximated by the 4th order Chebyshev polynomials. The three types of vertical distribution of eddy viscosity are assumed and the coefficient of eddy viscosity is decided from the new boundary condition. So the input parameters for the calculation of undertow become very simple. The theoretical solutions of the present model are compared with the various experimental results. This model shows a good agreement with the experimental results in the case of mild slope and linear type eddy viscosity.

  • PDF

Higher order zig-zag plate theory for coupled thermo-electric-mechanical smart structures (열-기계-전기 하중 하에서의 지능 복합재 평판 고차이론)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • A higher order zig-zag plate theory is developed to accurately predict fully coupled mechanical, thermal, and electric behaviors. Both the in-plane displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in tern-is of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux. The numerical examples of coupled and uncoupled analysis demonstrate the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings combined.

Visualization of mechanical stresses in expanding cell cluster (세포군집의 확장에 관여하는 물리적 힘의 가시화)

  • Cho, Youngbin;Gweon, Bomi;Ko, Ung Hyun;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Collective cell migration is a fundamental phenomenon observed in various biological processes such as development, wound healing, and cancer metastasis. During the collective migration, cells undergo changes in their phenotypes from those of stable to the migratory state via the process called epithelial-mesenchymal transition (EMT). Recent findings in biology and biochemistry have shown that EMT is closely related to the cancer invasion or metastasis, but not much of the correlations in kinematics and physical forces between the neighboring cells are known yet. In this study, we aim to understand the cell migration and stress distribution within the expanding cell cluster. We constructed the in vitro cell cluster on the hydrogel, employed traction force microscopy (TFM) and monolayer stress microscopy (MSM) to visualize the physical forces within the expanding cell monolayer. During the expansion, cells at the cluster edge exhibited enhanced motility and developed focal adhesions that are the essential features of EMT while cells at the core of the cluster maintained the epithelial characteristics. In the aspect of mechanical stress, the cluster edge had the highest traction force of ~90 Pa directed toward the cluster core, which means that cells at the edge actively pull the substrate to make the cluster expansion. The cluster core of the tightly confined cells by neighboring cells had a lower traction force value (~60 Pa) but the highest intercellular normal stress of ~800 Pa because of the accumulation of traction from the edge of the monolayer.

Finite element analysis of unconstrained axisymmetric piercing (구속이 없는 축대칭 피어싱 공정의 유한요소해석)

  • 양동열;유요한;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.876-888
    • /
    • 1986
  • The Study is concerned with the analysis of unconstrained axisymmetric piercing as a nonsteady forging process by the rigid-plastic finite element method. In the numerical analysis of axisymmetric piercing, the initial velocity field is generated by assuming the material as a linear viscous material to begin with in order to facilitate the input handling and to ensure better convergencey. The strain-hardening effect for nonsteady deformation and the friction of the die-material interial interface are considered in the formulation. Rigid body treatment is also incorporated in the developed program. The experiments are carried out for aluminum alloy specimens (A1204) with different specimen heights. It is shown that the experimental results are in excellent agreement with the finite element simulations is deformed configuration. For load prediction the theoretical prediction shows excellent agreement with th eexperimental laod in the initial stage of loading before fracture of the specimen is not initiated. Distribution of stresses, strains and strain rates has been found for the given cases in computation. On this basis several fracture criteria are introduced in order to check the fracture initiation. It is found that maximum shear criterion is capable of good fracture prediciton.

A Study on the Life Prediction and Quality Improvement of Joint in IC Package (플라스틱 IC 패키지 접합부의 수명예측 및 품질향상에 관한 연구)

  • 신영의;김종민
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 1999
  • Thermal fatigue strength of the solder joints is the most critical issue for TSOP(Thin Small Outline Package) because the leads of this package are extremely short and thermal deformation cannot be absorbed by the deflection of the lead. And the TSOP body can be subject to early fatigue failures in thermal cycle environments. This paper was discussed distribution of thermal stresses at near the joint between silicon chip and die pad and investigated their reliability of solder joints of TSOP with 42 alloy clad lead frame on printed circuit board through FEM and 3 different thermal cycling tests. It has been found that the stress concentration around the encapsulated edge structure for internal crack between the silicon chip and Cu alloy die pad. And using 42 alloy clad, The reliability of TSOP body was improved. In case of using 42 alloy clad die pad(t=0.03mm). $$\sigma$_{VMmax}$ is 69Mpa. It is showed that 15% improvement of the strength in the TSOP body in comparison with using Cu alloy die pad $($\sigma$_{VMmax}$=81MPa). In solder joint of TSOP, the maximum equivalent plastic strain and Von Mises stress concentrate on the heel of solder fillet and crack was initiated in it's region and propagated through the interface between lead and solder. Finally, the modified Manson-Coffin equation and relationship of the ratio of $N_{f}$ to nest(η) and cumulative fracture probability(f) with respect to the deviations of the 50% fracture probability life $(N_{f 50%})$ were achieved.

  • PDF

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(II) : Application to crack and localization band problems (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(II) : 균열과 국소화 밴드 문제로의 적용)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.501-507
    • /
    • 2007
  • In the first part of this study, the moving least squares finite difference method for solving solid mechanics problems was formulated. This second part verified the accuracy, robustness and effectiveness of the developed method through several numerical examples. It was shown that the method gives excellent convergence rate for elasticity problem. The solution process of elastic crack problems showed the easiness in discontinuity modeling and demonstrates the accuracy and efficiency in finding singular stress solution based on adaptive node distribution. The applicability to the engineering problem with abrupt change in displacement and stresses gradient fields is verified through a localization band problem. The developed method is expected to be extended to the various special engineering problems.

Fatigue Crack Propagation Life Assessment of T-joint Fillet Weldment Considering Residual Stress under Random Loading (변동하중하의 잔류응력을 고려한 십자형 용접부의 잔존 수명 예측에 관한 연구)

  • Kim, Sung-Hoon;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Chang-Hyuk;You, Won-Hyo;Yoo, Mi-Ji
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.46-55
    • /
    • 2011
  • This paper deals with the crack propagation life assessment of T-joint welded structure where typical fatigue cracks have been frequently initiated when the marine vessels experience the storm load. Welding residual stresses are calculated to investigate its effects on the fatigue life. Thereafter the residual stress distribution was applied to the AFGROW life prediction program, which incorporated the loading, the welding residual stress, and the geometric shape of the structure. The fatigue tests of the T-joint welded specimen under storm loading show the beach mark clearly generated on the fractured section of the weldment. The crack propagation life estimated based on the beach mark is compared with that of AFGROW to validate the life prediction. Based on the results, the evaluation method of the remaining fatigue life for T-joint fillet weldment of marine vessel's cargo hold with random load or storm load was established.

Analysis of the Strain Rate Effect in Electro-Magnetic Forming (전자기 성형에서의 변형률 속도 효과 해석)

  • 곽신웅;신효철;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1043-1058
    • /
    • 1990
  • The Strain rate effect in electro-magnetic forming, which is one of the high velocity forming methods, is studied by the finite element method in this paper. The forming process is simplified by neglecting the coupling between magnetic field and work-piece deformation, and the impulsive magnetic pressure is regarded as inner pressure load. A rate-dependent elasto-plastic material model, of which tangential modulus depends of effective strain rate, is proposed. The model is shown to well describe the transient increase of yield stresses, the decreases of the final displacement and yield stress, the decrease of the difference in the distribution of deformation along the axial direction, and the change of deformation mechanism due to strain rate effect. As a result, displacement, final deformed shape, radial velocity, deformation energy, and the changes of effective stress, effective strain and effective strain rate through plastic working are given. Based on the results, the effectiveness of this model and the strain rate effect of the deformation process of the work-piece are discussed.