Abstract
Collective cell migration is a fundamental phenomenon observed in various biological processes such as development, wound healing, and cancer metastasis. During the collective migration, cells undergo changes in their phenotypes from those of stable to the migratory state via the process called epithelial-mesenchymal transition (EMT). Recent findings in biology and biochemistry have shown that EMT is closely related to the cancer invasion or metastasis, but not much of the correlations in kinematics and physical forces between the neighboring cells are known yet. In this study, we aim to understand the cell migration and stress distribution within the expanding cell cluster. We constructed the in vitro cell cluster on the hydrogel, employed traction force microscopy (TFM) and monolayer stress microscopy (MSM) to visualize the physical forces within the expanding cell monolayer. During the expansion, cells at the cluster edge exhibited enhanced motility and developed focal adhesions that are the essential features of EMT while cells at the core of the cluster maintained the epithelial characteristics. In the aspect of mechanical stress, the cluster edge had the highest traction force of ~90 Pa directed toward the cluster core, which means that cells at the edge actively pull the substrate to make the cluster expansion. The cluster core of the tightly confined cells by neighboring cells had a lower traction force value (~60 Pa) but the highest intercellular normal stress of ~800 Pa because of the accumulation of traction from the edge of the monolayer.