• Title/Summary/Keyword: Distribution Manifold

Search Result 136, Processing Time 0.051 seconds

Experimental study on the spray characteristics of a dual-manifold liquid-centered swirl coaxial injector

  • Lee, Ingyu;Yoon, Jungsoo;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.444-453
    • /
    • 2014
  • A throttleable rocket engine enables operational possibilities such as the docking of spacecraft, maneuvering in a certain orbit and landing on a planet's surface, altitude control, and entrance to atmosphere-less planets. Thus, throttling methods have long been researched. However, dual-manifold injectors, which represent one throttling method, have been investigated less than others. In this study, dual-manifold and single-manifold injectors were compared to determine the characteristics of dual-manifold injectors. Also, the effects of gas injection were investigated with various F/O ratios. To investigate the characteristics, mass flow rate, spray pattern, spray angle, and droplet size were measured. The spray angle and droplet size were captured by indirect photography. About 30 images were taken to assess the spray patterns and spray angle. Also, 700 images were analyzed to understand the droplet distribution and targeting area, moving to the right from the centerline with 1.11-cm intervals. The droplet size was obtained from an image processing procedure. From the results, the spray angle showed two transition regions, due to swirl momentum in the swirl chamber regardless of the F/O ratio. The droplet size showed similar trends in both dual-manifold and single-manifold injectors except in the low mass flow rate region. In the case of the dual- manifold injector, the spray cone was not fully developed in the low mass flow rate region due to low angular momentum in the swirl chamber.

An experimental study on the behavior of fuel flow in intake manifold by the model (모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구)

  • 박경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Lee, Jae Won;Lee, Chul Woo
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.621-643
    • /
    • 2020
  • Depending on the characteristic vector filed ζ, a generic lightlike submanifold M in an indefinite Kaehler manifold ${\bar{M}}$ with a semi-symmetric metric connection has various characterizations. In this paper, when the characteristic vector filed ζ belongs to the screen distribution S(TM) of M, we provide some characterizations of (Lie-) recurrent generic lightlike submanifold M in an indefinite Kaehler manifold ${\bar{M}}$ with a semi-symmetric metric connection. Moreover, we characterize various generic lightlike submanifolds in an indefinite complex space form ${\bar{M}}$ (c) with a semi-symmetric metric connection.

Thermal Analysis According to Material of Manifold (매니폴드 재질에 따른 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.33-37
    • /
    • 2009
  • Manifold could apply stainless steel with light weight and durability to improve fuel efficiency at automotive industry. This study is analyzed and compared by heat transfer and deformation according to the materials of cast iron and stainless steel. The heat transfer at manifold of cast iron at the distribution of heat temperature is more than that of stainless steel. But the value of maximum heat deformation in case of stainless steel is 1.5 times as great as that in case of cast iron. The value of maximum heat equivalent stress in case of stainless steel is 2.7 times as great as that in case of cast iron. This maximum stress at manifold is shown at the part assembled with engine body.

  • PDF

Numerical Analysis on the Flow Distribution in a 1 kWe SOFC Stack of Internal Manifolds According to the Variation of Manifold Sizes (매니폴드 크기에 따른 1 kWe급 내부 매니폴드형 고체산화물 연료전지 스택 유량 분배에 관한 수치 해석)

  • KIM, YOUNG JIN;YIN, HAOYUAN;KIM, HYEON JIN;YUN, KYONG SIK;YU, JI HAENG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2022
  • In this study, we performed numerical analysis for 1 kWe SOFC stack of internal manifold types according to the different manifold sizes to verify the influence of the flow uniformity into each cell. To simulate the flow phenomena in the stack, the continuity and momentum conservation equations including the standard k-𝜺 turbulent model for the steady-state conditions were applied. From the calculation results, we verified that the pressure drop from inlet pipes to outlet pipes decreased to a log scale as the manifold size increased in the internal manifold types. Also, we found that the flow uniformity increased on an exponential scale as the manifold size increased. In addition, the calculation results showed that the flow uniformity gradually improved as the fuel and oxygen utilization increased.

Computational Study on Design of the AIG for the Enhancement of Ammonia Injection in the SCR System (SCR 시스템 내 암모니아 분사 균일도 개선을 위한 AIG 설계에 관한 해석적 연구)

  • Seo, Moon-Hyeok;Chang, Hyuksang
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.410-418
    • /
    • 2012
  • The performance of the ammonia injection gun (AIG) used for maximizing the utilization of reducing agent in the selective catalytic reduction (SCR) system is decided by several parameters such as the pattern of flow distribution, geometry of the air distribution manifold (ADM) and the array and geometry of nozzles. In the study, the uniformity of jet flows from the nozzles in AIG was analyzed statistically by using the computational fluid dynamics (CFD) method to evaluate the role of design parameters on the performance of the SCR system. The uniformity of jet flows from the nozzles is being deteriorated with increasing the supplying flow rate to the AIG. Distribution rates to each branch pipe become lower with decreasing distance to the header, and flow rates from nozzle are also reduced with decreasing distance to the header. The uniformity of jet flows from nozzles becomes stable significantly when the ratio of summative area of nozzles to each sectional area of the branch pipe is below 0.5.

Combustion Characteristics of Full-scale Gas Generator for 30 ton Class Liquid Rocket Engine (30톤급 실물형 가스발생기 연소 특성)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.129-132
    • /
    • 2008
  • Combustion characteristics of a gas generator for a 30 ton-class liquid rocket engine were studied. At the early stage of development, the combustion tests of the gas generator were performed by only using the nozzle which substitute for a turbine manifold exit. Then, the extension tube was applied between the gas generator and the nozzle for imitating the resonant mode of gas generator and turbine manifold. Finally, the hot-firing tests were performed on the condition of connecting the gas generator with the turbine manifold. In the paper, the step-by-step results such as temperature distribution and pressure fluctuations were analyzed.

  • PDF

Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC) (용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.