DOI QR코드

DOI QR Code

Numerical Analysis on the Flow Distribution in a 1 kWe SOFC Stack of Internal Manifolds According to the Variation of Manifold Sizes

매니폴드 크기에 따른 1 kWe급 내부 매니폴드형 고체산화물 연료전지 스택 유량 분배에 관한 수치 해석

  • KIM, YOUNG JIN (Department of Mechanical Engineering, Hannam University) ;
  • YIN, HAOYUAN (Department of Mechanical Engineering, Hannam University) ;
  • KIM, HYEON JIN (High Temperature Energy Conversion Lab, Korea Institute of Energy Research) ;
  • YUN, KYONG SIK (High Temperature Energy Conversion Lab, Korea Institute of Energy Research) ;
  • YU, JI HAENG (High Temperature Energy Conversion Lab, Korea Institute of Energy Research)
  • 김영진 (한남대학교 기계공학과) ;
  • 윤호원 (한남대학교 기계공학과) ;
  • 김현진 (한국에너지기술연구원 고온에너지전환연구실) ;
  • 윤경식 (한국에너지기술연구원 고온에너지전환연구실) ;
  • 유지행 (한국에너지기술연구원 고온에너지전환연구실)
  • Received : 2021.12.22
  • Accepted : 2022.01.27
  • Published : 2022.02.28

Abstract

In this study, we performed numerical analysis for 1 kWe SOFC stack of internal manifold types according to the different manifold sizes to verify the influence of the flow uniformity into each cell. To simulate the flow phenomena in the stack, the continuity and momentum conservation equations including the standard k-𝜺 turbulent model for the steady-state conditions were applied. From the calculation results, we verified that the pressure drop from inlet pipes to outlet pipes decreased to a log scale as the manifold size increased in the internal manifold types. Also, we found that the flow uniformity increased on an exponential scale as the manifold size increased. In addition, the calculation results showed that the flow uniformity gradually improved as the fuel and oxygen utilization increased.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(20213030030220, 캐스케이드 스택을 활용한 10 kWe급 고효율 SOFC 시스템 기술개발).

References

  1. Y. D. Lee, J.Y. Kim, D. J. Yoo, H. Ju, and H. Kim, "Review of research trend in fuel cell: analysis on fuel-cell-related technologies in electrode, electrolyte, separator plate, stack, system, balance of plant, and diagnosis areas", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 530-545, doi: https://doi.org/10.7316/KHNES.2020.31.6.530.
  2. N. Park and H. Kim, "Analysis of R&D investment for hydrogen and fuel cell", Trans Korean Hydrogen New Energy Soc, Korea, 2010, pp. 143-148. https://doi.org/10.7316/KHNES.2012.23.2.143
  3. G. Van-Tien, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Techno-economic analysis of reversible solid oxide fuel cell system couple with waste steam", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.
  4. R. O'Hayre, S.W. Cha, W. Colella, and F. B. Prinz, "Fuel cell fundamentals", Wiley, 2016, doi: https://doi.org/10.1002/9781119191766.
  5. A. L. Dicks and D. A. J. Rand, "Fuel cell systems explained", Wiley, 2018, doi: https://doi.org/10.1002/9781118706992.
  6. Wongchanapai, H . Iwai, M . Saito, and H . Yoshida, "Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system", J. power sources, Vol. 223, 2013, pp. 9-17, doi: https://doi.org/10.1016/j.jpowsour.2012.09.037.
  7. D. Papurello, V. Chiodo, S. Maisano, A. Lanzini, and M. Santarelli, "Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds", Renew. Energy, Vol. 127. 2018, pp. 481-494, doi: https://doi.org//10.1016/j.renene.2018.05.006.
  8. N. Laosiripojana and S. Assabumrungrat, "Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC", J. power sources, Vol. 163, No. 2, 2007, pp. 943-951, doi: https://doi.org/10.1016/j.jpowsour.2006.10.006.
  9. K. Wang, D. Hissel, M. C. Pera, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, and J.Saarinene, "A review on solid oxide fuel cell models", Int. J. Hydrogen Energ., Vol. 36, No. 12, 2011, pp. 7212-7228, doi: https://doi.org/10.1016/j.ijhydene.2011.03.051.
  10. S. K. Dong, W. N. Jung, K. Rashid, A. Kashimoto, "Design and numerical analysis of a planar anode-supported SOFC stack", Renew. Energy Vol. 94, 2016, pp. 637-650, doi: https://doi.org/10.1016/j.renene.2016.03.098.
  11. X. Wu, J. Jiang, W. Zhao, X. Li, and J. Li, "Two-dimensional temperature distribution estimation for a cross-flow planar solid oxide fuel cell stack", Int. J. Hydrogen Energ., Vol. 45, No. 3, 2020, pp. 2257-2278, doi: https://doi.org/10.1016/j.ijhydene.2019.11.091.
  12. ANSYS, "ANSYS fluent user's guide", ANSYS, Inc., USA, 2021.
  13. F. White, "Fluid Mechanics", 8th, McGrawHill, USA, 2017.