한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.993-996
/
1993
This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.
본 연구에서는 블록체인 프로토콜과 네트워크 보안에 관련해서 MITM공격 및 DoS/DDoS 공격 등에 강한 대응수준을 갖출 수 있도록 블록체인 구성과 스마트 컨트랙트 상의 암호화 키 관리 방안과 에 대해 연구한다. 암호화 통신 프로토콜과 인증강화를 통한 중간자 공격(MITM)등의 데이터보안 위협에 대응, 노드간의 로드밸런싱과 분산화 된 방식으로 DDoS 공격 대응, 안전한 코딩과 취약점 검사, 안전한 합의알고리즘에 의한 스마트 컨트랙트 보안 강화, 사용자 인증과 권한 부여 강화를 통한 액세스 제어 및 인증, 블록체인 코어 및 노드의 보안성 강화, 기타 블록체인 프로토콜 업데이트 및 보안 강화를 위한 모니터링 시스템 구축 등을 통해 보안성이 강화된 블록체인 기술을 활용할 수 있을 것으로 기대된다.
In this study, we propose a multi-GPU-based 8KVR stitching system that operates in real time on both local and cloud machine environments. The proposed system first obtains multiple 4 K video inputs, decodes them, and generates a stitched 8KVR video stream in real time. The generated 8KVR video stream can be downloaded and rendered omnidirectionally in player apps on smartphones, tablets, and head-mounted displays. To speed up processing, we adopt group-of-pictures-based distributed decoding/encoding and buffering with the NV12 format, along with multi-GPU-based parallel processing. Furthermore, we develop several algorithms such as equirectangular projection-based color correction, real-time CG overlay, and object motion-based seam estimation and correction, to improve the stitching quality. From experiments in both local and cloud machine environments, we confirm the feasibility of the proposed 8KVR stitching system with stitching speed of up to 83.7 fps for six-channel and 62.7 fps for eight-channel inputs. In addition, in an 8KVR live streaming test on the 5G MEC/cloud, the proposed system achieves stable performances with 8 K@30 fps in both indoor and outdoor environments, even during motion.
Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.
This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.
최근 MOM 기술은 비즈니스 로직을 수행하는 애플리케이션 서버의 필수적인 구성요소로서 자리잡고 있으며, 보통 수백에서 수천의 클라이언트 요청을 처리할 수 있는 능력을 제공한다. MOM 은 이러한 대용량의 클라이언트 요청을 효과적으로 처리하기 위해서 효율적이고 확장성있는(스케일러블) 네트워크 모듈이 필요하며, 다양한 네트워크 프로토콜을 지원해야 한다. MOM이 기본적으로 지원하는 메시징 기능은 PTP(Point-To-Point)와 publish/subscribe 메시징 도메인으로 나뉘는데 이 논문에서는 두 가지 메시징 도메인과 그룹통신 메시징 서비스 기능을 동시에 지원하는 MoIM-Message 시스템의 하부 통신 모듈의 설계에 대해 기술한다. PTP와 publish/subscribe 메시징을 지원하기 위해 세가지 프리미티브 메시징 오퍼레이션인 "synchronous send", "synchronous receive", "asynchronous receive"를 정의하였으며 하부 통신 모듈 역할을 하는 메시지 트랜스포트 관리 계층내의 트랜스포트 관리자 내에 구현되었다. 트랜스포트 관리자는 다양한 트랜스포트 프로토콜을 적용할 수 있도록 하기 위해 트랜스포트 어댑터로 설계되었으며, 대량의 통신 요청을 효과적으로 처리하기 위해 "polling with multiple service thread model" 기법을 적용하여 구현되었다. 또한, 모바일 클라이언트 환경을 지원하기 위해 클라이언트 측 통신 모듈을 IPaq PDA 상에 포팅하였다. 본 논문에서 제안하는 세 가지 프리미티브 메시징 오퍼레이션을 제공하는 통신 모듈은 MOM이 기본적으로 지원해야 할 메시징 도메인과 대용량의 클라이언트 요청을 효율적으로 처리할 수 있는 구조를 가진다.es}8$ 모드를 모두 사용한 경우와 $8{\times}8$ 단일모드를 사용한 경우보다 계산 시간이 감소하였음을 확인하였다.행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에
본 논문에서는 분산 객체 컴퓨팅 환경에서 보장된 실시간 서비스를 지원하는 TMO 객체그룹(TMO Object Group) 모델을 설계ㆍ구축하고, 우리 모델의 정확한 분산 실시간 서비스 수행능력을 검증 한다. 우리가 제안한 TMO 객체그룹은 TINA(Telecommunications Information Networking Architecture) 의 객체그룹 개념을 기반으로, 실시간 특성을 가지는 TMO(Time-triggered Message-triggered Object) 객체들과 객체그룹 내의 객체 관리 서비스(Object Management Service), 실시간 스케줄링 서비스(Real-Time Scheduling Service)를 지원하는 컴포넌트들로 구성된다. 또한, TMO 객체는 분산 시스템에 비중복 또는 중복으로 존재할 수 있다. 본 모델은 특정 ORB나 운영체제들의 제약 없이 COTS(Commercial Off-The-Shelf) 미들웨어 상에서 보장된 분산 실시간 서비스를 수행한다. TMO 객체그룹을 구축하기 위해 TMO 객체의 개념과 TMO 객체그룹의 구조를 정의하였고, 객체그룹 내의 컴포넌트들의 기능과 그들간의 상호작용을 설계 구현하였다. TMO 객체그룹은 객체 관리 서비스와 실시간 스케줄링 서비스 지원을 위해 동적바인더객체(Dynamic Binder Object)와 스케줄러객체(Scheduler Object)를 각각 가진다. 동적바인더객체는 클라이언트들의 요청에 대해 중복 TMO 객체 중 적정 객체를 선정하는 동적 바인딩 서비스를 지원하고, 스케쥴러객체는 클라이언트들의 서비스 요청에 대해 TMO 객체가 수행해야 할 작업들의 우선순위를 정하는 실시간 스케줄링 서비스를 지원한다. TMO 객체그룹의 수행 검증을 위해 이미 연구된 알고리즘을 확장한 동적 바인딩 서비스를 위한 바인딩 우선순위(Binding Priority) 알고리즘과 실시간 스케줄링 서비스를 위한 EDF(Earliest Deadline First) 알고리즘을 적용하여 동적바인더객체와 스케쥴러객체를 구현했다. 마지막으로 수치 분석을 통해 TMO 객체그룹이 비중복/중복 TMO 객체의 동적 바인딩 서비스와 클라이언트들의 요청을 받는 임의의 TMO 객체에서 실시간 스케줄링 서비스를 지원하는지 검증했다.
수치고도모형으로부터 산출된 지형변수는 지표면 프로세스와 관련된 공간모델의 개발에 있어 중요한 요소이다. 이 논문에서는 사면유역지수(upslope contributing area)가 토양성질의 공간적 분포를 예측하는 능력이, 사용한 알고리듬과 격자크기에 따라 어떻게 변하는지를 연구하였다. 상이한 환경조건을 지니는 여덟 군데의 연구지역에서 토양-경관 자료를 획득하여 이중 4개의 토양성질을 분석에 포함시켰다. 다섯 가지의 알고리듬을 통해 사면유역지수를 산출하여 이 지수들이 수치고도모형의 해상도에 얼마나 민감한지를 분석하였다. 다방향유수흐름 알고리듬(multiple flow algorithm)을 통해 계산된 지형변수가 대부분의 토양변수와 높은 상관관계를 보임과 동시에 격자크기의 변화에 낮은 민감도를 보였다. 지형변수와 토양변수 사이의 높은 상관관계는 15-50 m의 해상도에서 유사한 예측능력을보였다. 격자크기를 증가시켰을때 발생하는 미세지형정보의 손실을 감안한다면, 15-30 m 정도의 공간적 스케일이 토양경관 모델링에 적합할 것으로 판단된다.
본 논문에서는 사용자들 간의 간섭이 존재하는 무선망에서 상하향 링크의 수율 최대화를 동시에 고려한다. 상향 링크에서는 라그랑지안 완화기법에 기반으로 하는 분산적이고 반복적인 알고리즘을 제안하다. 상향 링크에서의 라그랑지 곱수와 네트워크 쌍대성 성질을 이용하여 채널 이득과 최대 전력 제약이 상향 링크와 동일한 듀얼 하향 링크에서의 수율 최대화를 얻을 수 있다. 본 논문에서 증명한 네트워크 쌍대성 성질은 기존의 연구에 비해 보다 일반적인 형태를 가진다. 또한, 모의실험 결과는 채널의 상관 계수가 ${\theta}{\in}$(0.5, 1] 일 때, 상하향 링크에서 제안된 기법들이 각각 최적값에 근접하다는 것을 보여준다. 반면에 채널의 상관 계수가 낮을 때 (${\theta}{\in}$(0, 0.5]), 하향 링크에서의 성능 열화를 관찰할 수 있다. 네트워크 쌍대성 성질은 상향 링크에 비해 채널 이득과 최대 전력 제약이 다른 실제 하향 링크로 확장된다. 이러한 쌍대성 성질에 기반으로 하는 기법은 실제 하향 링크에서도 충분히 적용될 수 있음이 모의실험 결과로 보여진다. 기존에 제안된 알고리즘의 복잡도를 고려하였을때, 본 논문의 결과는 일반화된 네트워크 쌍대성 성질의 성능과 실제 적용면에서 상당히 유용하다고 할 수 있다.
한우의 근내지방도 또는 임신 여부 등과 같이 이산형 분포의 성질을 갖는 다수의 형질들에 대한 유전모수 및 종축의 유전능력을 평가하기 위한 방법으로써 Threshold 모형하에서 Bayesian 추론방법의 일종인 Gibbs sampling방법을 모의실험을 통하여 알아보았으며 기록이 누락된 다수의 형질을 포함하는 다형질 Threshold 개체모형에서의 종축평가 방법론을 제시하였다. 이산형 형질의 관측치에 대응하는 임의의 잠재변수는 기록을 갖고 있는 형질들에 대한 사전정보를 고려한 사후조건확률분포에서 Gibbs sampling을 할 때 모수에 근접하는 확률분포를 얻을 수 있었으며 이러한 이산형 기록들에 대한 육종가 추정치는 선형모형에서 보다 Threshold 모형에서의 추정치가 실제 모수에 더욱 근접하는 것을 알 수 있었다. 따라서 기록이 누락된 개체들에 대한 이산형 분포를 갖는 형질들에 대하여 선형분포를 갖는 형질들과 함께 동시 유전분석할 때 Threshod 모형이 일반 선형모형 보다 적합함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.