• 제목/요약/키워드: Distributed Power System

Search Result 1,180, Processing Time 0.031 seconds

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

A Study on the Standard-interfaced Smart Farm Supporting Non-Standard Sensor and Actuator Nodes (비표준 센서 및 구동기 노드를 지원하는 표준사양 기반 스마트팜 연구)

  • Bang, Dae Wook
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.139-149
    • /
    • 2020
  • There are now many different commercial weather sensors suitable for smart farms, and various smart farm devices are being developed and distributed by companies participating in the government-led smart farm expansion project. However, most do not comply with standard specifications and are therefore limited to use in smart farms. This paper proposed the connecting structure of operating non-standard node devices in smart farms following standard specifications supporting smart greenhouse. This connecting structure was proposed as both a virtual node module method and a virtual node wrapper method. In addition, the SoftFarm2.0 system was experimentally operated to analyze the performance of the implementation of the two methods. SoftFarm2.0 system complies with the standard specifications and supports non-standard smart farm devices. According to the analysis results, both methods do not significantly affect performance in the operation of the smart farm. Therefore, it would be good to select and implement the method suitable for each non-standard smart farm device considering environmental constraints such as power, space, distance of communication between the gateway and the node of the smart farm, and software openness. This will greatly contribute to the spread of smart farms by maximizing deployment cost savings.

A Study on WSN based Low Power Fire Prevention System (무선 센서 네트워크 기반 저전력 화재방재 시스템을 위한 전송 프로토콜 연구)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Li, Qi Gui;Kim, Myung-Jin;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.535-538
    • /
    • 2010
  • In this paper, this study goal is development for WSN-based fire prevention systems of using temperature/humidity Sensor. So, distributed sensor nodes structural and packet transfer characteristics study for fire monitoring. Battery-operated wireless sensor networks is data transfer manner of multi-hop. WSN fire prevention system need to sensor nodes management and energy consumption of efficient adjust for sustained action. Thus, study with efficient energy consumption the normal WSN environment is not, characteristics for WSN fire prevention environment.

  • PDF

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

A Novel Resource Allocation Algorithm in Multi-media Heterogeneous Cognitive OFDM System

  • Sun, Dawei;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.691-708
    • /
    • 2010
  • An important issue of supporting multi-users with diverse quality-of-service (QoS) requirements over wireless networks is how to optimize the systematic scheduling by intelligently utilizing the available network resource while, at the same time, to meet each communication service QoS requirement. In this work, we study the problem of a variety of communication services over multi-media heterogeneous cognitive OFDM system. We first divide the communication services into two parts. Multimedia applications such as broadband voice transmission and real-time video streaming are very delay-sensitive (DS) and need guaranteed throughput. On the other side, services like file transmission and email service are relatively delay tolerant (DT) so varying-rate transmission is acceptable. Then, we formulate the scheduling as a convex optimization problem, and propose low complexity distributed solutions by jointly considering channel assignment, bit allocation, and power allocation. Unlike prior works that do not care computational complexity. Furthermore, we propose the FAASA (Fairness Assured Adaptive Sub-carrier Allocation) algorithm for both DS and DT users, which is a dynamic sub-carrier allocation algorithm in order to maximize throughput while taking into account fairness. We provide extensive simulation results which demonstrate the effectiveness of our proposed schemes.

Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers (균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어)

  • ;Stephen J Elliott;Paolo Gardonio
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

Frequency Spectrum Analysis of Electromagnetic Waves Radiated by Electric Discharges

  • Park, Dae-Won;Kil, Gyung-Suk;Cheon, Sang-Gyu;Kim, Sun-Jae;Cha, Hyeon-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.389-395
    • /
    • 2012
  • In this paper, we analyzed the frequency spectrum of the electromagnetic waves radiated by an electric discharge as a basic study to develop an on-line diagnostic technique for power equipment installed inside closed-switchboards. In order to simulate local and series arc discharges caused by an electric field concentration and poor connections, three types of electrode systems were fabricated, consisting of needle and plane electrodes and an arc generator meeting the specifications of UL 1699. The experiment was carried out in an electromagnetic anechoic chamber, and the measurement system consisted of a PD free transformer, a loop antenna with a frequency bandwidth of 150 kHz-30 MHz, an ultra log periodic antenna with a frequency bandwidth of 30 MHz-2 GHz, and an EMI test receiver with a frequency bandwidth of 3 Hz-3 GHz. According to the experimental results, the frequency spectra of the electrical discharges were widely distributed across a range of 150 kHz-400 MHz, depending on the defects, while commonly found between 150 kHz and 10 MHz. Therefore, considering the ambient noise and antenna characteristics, the best frequency bandwidth for a measurement system to monitor abnormal conditions by detecting electromagnetic waves in closedswitchboards is 150 kHz-10 MHz.

Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review

  • Yu, Aofang;Su, Wen;Lin, Xinxing;Zhou, Naijun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.699-714
    • /
    • 2021
  • Supercritical CO2 (S-CO2) Brayton cycle has been applied to various heat sources in recent decades, owing to the characteristics of compact structure and high efficiency. Understanding the research development in this emerging research field is crucial for future study. Thus, a bibliometric approach is employed to analyze the scientific publications of S-CO2 cycle field from 2000 to 2019. In Scopus database, there were totally 724 publications from 1378 authors and 543 institutes, which were distributed over 55 countries. Based on the software-BibExcel, these publications were analyzed from various aspects, such as major research areas, affiliations and keyword occurrence frequency. Furthermore, parameters such as citations, hot articles were also employed to evaluate the research output of productive countries, institutes and authors. The analysis showed that each paper has been cited 13.39 times averagely. United States was identified as the leading country in S-CO2 research followed by China and South Korea. Based on the contents of publications, existing researches on S-CO2 are briefly reviewed from the five aspects, namely application, cycle configurations and modeling, CO2-based mixtures, system components, and experiments. Future development is suggested to accelerate the commercialization of S-CO2 power system.

Lightweight RFID Authentication Protocols Based on Hash Function (해쉬함수에 기반한 경량화된 RFID 인증 프로토콜)

  • Ha, Jae-Cheol;Baek, Yi-Roo;Kim, Hwan-Koo;Park, Jea-Hoon;Moon, Sang-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.61-72
    • /
    • 2009
  • To guarantee security between the tag and back-end server and implementation efficiency in low power tag, we propose two typed mutual authentication protocols in RFID system. One is static-ID authentication scheme which is well suitable in distributed server environments. The other is dynamic-ID scheme which is additively satisfied forward security. In proposed scheme, it does not need any random number generator in tag and requires only one(maximally three) hash operation(s) in tag or server to authenticate each other. Furthermore, we implement the proposed schemes in RFID smart card system and verify its normal operations.

Developement of Multifunction PCM Recorder for Telemetry System (원격측정용 다기능 PCM 데이터 저장장치 개발)

  • Daeyeon Kim;Jaemin Kim;Kwang-Ryul Koh;Sang-Bum Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.171-178
    • /
    • 2023
  • PCM data is result of air-vehicle flight test, this data is distributed for each engineers to analyze its condition. Since line-of-sight between the air-vehicle and the ground receiver cannot always be secured, remote PCM data recording system was claimed to be required. In this paper multi-function PCM data recorder has been described. This PCM data recorder was intended to place on inside of flight object. It can record about two hours in 32 GB SD card with maximum 7 Mbps data rate. RS-422/485 and RJ-45 interface enhanced accessibility for users. 5 V and 1 A power consumption and 19.5 mm × 152.5 mm × 102.3 mm allow to connect with mobile PCM devices. It acquired more than 190-minutes data in 12-times flight test. Also, it achieved military standard environmental test MIL-STD-810G to prove its stability and solidness.