DOI QR코드

DOI QR Code

Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review

  • Yu, Aofang (School of Energy Science and Engineering, Central South University) ;
  • Su, Wen (School of Energy Science and Engineering, Central South University) ;
  • Lin, Xinxing (Institute of Science and Technology, China Three Gorges Corporation) ;
  • Zhou, Naijun (School of Energy Science and Engineering, Central South University)
  • Received : 2020.04.29
  • Accepted : 2020.08.02
  • Published : 2021.03.25

Abstract

Supercritical CO2 (S-CO2) Brayton cycle has been applied to various heat sources in recent decades, owing to the characteristics of compact structure and high efficiency. Understanding the research development in this emerging research field is crucial for future study. Thus, a bibliometric approach is employed to analyze the scientific publications of S-CO2 cycle field from 2000 to 2019. In Scopus database, there were totally 724 publications from 1378 authors and 543 institutes, which were distributed over 55 countries. Based on the software-BibExcel, these publications were analyzed from various aspects, such as major research areas, affiliations and keyword occurrence frequency. Furthermore, parameters such as citations, hot articles were also employed to evaluate the research output of productive countries, institutes and authors. The analysis showed that each paper has been cited 13.39 times averagely. United States was identified as the leading country in S-CO2 research followed by China and South Korea. Based on the contents of publications, existing researches on S-CO2 are briefly reviewed from the five aspects, namely application, cycle configurations and modeling, CO2-based mixtures, system components, and experiments. Future development is suggested to accelerate the commercialization of S-CO2 power system.

Keywords

Acknowledgement

This work is supported by the program "Researches on the fundamental theory for the optimization and operation of supercritical CO2 power cycle" from China Three Gorges Corporation, grant number 202003024.

References

  1. T.T. Xin, C. Xu, Y.P. Yang, A general and simple method for evaluating the performance of the modified steam Rankine cycle: thermal cycle splitting analytical method, Energy Convers. Manag. 210 (2020) 112712. https://doi.org/10.1016/j.enconman.2020.112712
  2. W. Su, L. Zhao, S. Deng, Developing a performance evaluation model of organic Rankine cycle for working fluids based on the group contribution method, Energy Convers. Manag. 132 (2017) 307-315. https://doi.org/10.1016/j.enconman.2016.11.040
  3. W. Su, Y.H. Wang, S. Deng, L. Zhao, D.P. Zhao, Thermodynamic performance comparison of Organic Rankine Cycle between zeotropic mixtures and pure fluids under open heat source, Energy Convers. Manag. 165 (2018) 720-737. https://doi.org/10.1016/j.enconman.2018.03.071
  4. Y.P. Liu, Y. Wang, D.G. Huang, Supercritical CO2 Brayton cycle: a state-of-th-eart review, Energy 189 (2019) 115900. https://doi.org/10.1016/j.energy.2019.115900
  5. I. Dincer, C. Zamfirescu, Advanced Power Generation Systems, Elsevier Inc, 2014.
  6. R. Viswanathan, J. Sarver, J.M. Tanzosh, Boiler materials for ultra-supercritical coal power plants-steamside oxidation, J. Mater. Eng. Perform. 15 (3) (2006) 255-274. https://doi.org/10.1361/105994906X108756
  7. Y.N. Peng, W. Su, N.J. Zhou, L. Zhao, How to evaluate the performance of subcritical Organic Rankine Cycle from key properties of working fluids by group contribution methods? Energy Convers. Manag. 221 (2020) 113204. https://doi.org/10.1016/j.enconman.2020.113204
  8. W. Su, L. Zhao, S. Deng, W.C. Xu, Z.X. Yu, A limiting efficiency of subcritical Organic Rankine cycle under the constraint of working fluids, Energy 143 (2018) 458-466. https://doi.org/10.1016/j.energy.2017.11.003
  9. W. Su, L. Zhao, S. Deng, Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model, Appl. Energy 202 (2017) 618-627. https://doi.org/10.1016/j.apenergy.2017.03.133
  10. Y. Koc, H. Yagl i, A. Koc, Exergy analysis and performance improvement of a subcritical/supercritical organic rankine cycle (ORC) for exhaust gas waste heat recovery in a biogas fuelled combined heat and power (CHP) engine through the use of regeneration, Energies 12 (4) (2019) 575. https://doi.org/10.3390/en12040575
  11. F. Rovense, M.A. Reyes-Belmonte, J. Gonz alez-Aguilar, M. Amelio, S. Bova, M. Romero, Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system, Energy 173 (2019) 971-984. https://doi.org/10.1016/j.energy.2019.02.135
  12. G.D. Perez-Pichel, J.I. Linares, L.E. Herranz, B.Y. Moratilla, Potential application of Rankine and He-Brayton cycles to sodium fast reactors, Nucl. Eng. Des. 241 (8) (2011) 2643-2652. https://doi.org/10.1016/j.nucengdes.2011.04.038
  13. J. Sarkar, Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion, Renew. Sustain. Energy Rev. 48 (2015) 434-451. https://doi.org/10.1016/j.rser.2015.04.039
  14. Y. Wang, G.R. Guenette, P. Hejzlar, M.J. Driscoll, Aerodynamic Design of Turbomachinery for 300 MWe Supercritical Carbon Dioxide Brayton Power Conversion System, Massachusetts Institute of Technology, Cambridge, MA, 2005. Report No. MIT-GFR-022.
  15. R. Allam, S. Martin, B. Forrest, J. Fetvedt, X.J. Lu, D. Freed, G.W. Brown Jr., T. Sasaki, M. Itoh, J. Manning, Demonstration of the Allam Cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture, Energy Procedia 114 (2017) 5948-5966. https://doi.org/10.1016/j.egypro.2017.03.1731
  16. V. Dostal, P. Hejzlar, M.J. Driscoll, The supercritical carbon dioxide power cycle: comparison to other advanced power cycles, Nucl. Technol. 154 (3) (2006) 283-301. https://doi.org/10.13182/NT06-A3734
  17. G. Sulzer, Verfahren zur erzeugung von arbeit aus warme, Swiss Patent (1950) 269599.
  18. E.G. Feher, The supercritical thermodynamic power cycle, Energy Convers. 8 (2) (1968) 85-90. https://doi.org/10.1016/0013-7480(68)90105-8
  19. V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.
  20. Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, J.E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol. 47 (6) (2015) 647-661. https://doi.org/10.1016/j.net.2015.06.009
  21. D. Milani, M.T. Luu, R. McNaughton, A. Abbas, Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: a vital transition for low-carbon power generation industry, Energy Convers. Manag. 148 (2017) 1317-1331. https://doi.org/10.1016/j.enconman.2017.06.017
  22. M. Marchionni, G. Bianchi, S.A. Tassou, Review of supercritical carbon dioxide (S-CO2) technologies for high-grade waste heat to power conversion, SN Appl. Sci. 2 (4) (2020) 1-13.
  23. S. Duniam, A. Veeraragavan, Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power, Energy 187 (2019) 115992. https://doi.org/10.1016/j.energy.2019.115992
  24. G. Kimzey, Development of a Brayton Bottoming Cycle Using Supercritical Carbon Dioxide as the Working Fluid, Electric Power Research Institute, University Turbine Systems Research Program, Gas Turbine Industrial Fellowship, Palo Alto, CA, 2012.
  25. G. Manente, M. Costa, On the conceptual design of novel supercritical CO2 power cycles for waste heat recovery, Energies 13 (2) (2020) 370. https://doi.org/10.3390/en13020370
  26. M.S. Kim, Y. Ahn, B. Kim, J.I. Lee, Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle, Energy 111 (2016) 893-909. https://doi.org/10.1016/j.energy.2016.06.014
  27. Q. Zhu, Innovative power generation systems using supercritical CO2 cycles, Clean Energy 1 (1) (2017) 68-79. https://doi.org/10.1093/ce/zkx003
  28. M.H. Ahmadi, M. Alhuyi Nazari, R. Ghasempour, F. Pourfayaz, M. Rahimzadeh, T.Z. Ming, A review on solar-assisted gas turbines, Energy Sci. Eng. 6 (6) (2018) 658-674. https://doi.org/10.1002/ese3.238
  29. P. Kumar, K. Srinivasan, Carbon dioxide based power generation in renewable energy systems, Appl. Therm. Eng. 109 (2016) 831-840. https://doi.org/10.1016/j.applthermaleng.2016.06.082
  30. M.J. Li, H.H. Zhu, J.Q. Guo, K. Wang, W.Q. Tao, The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries, Appl. Therm. Eng. 126 (2017) 255-275. https://doi.org/10.1016/j.applthermaleng.2017.07.173
  31. J.L. Xu, C. Liu, E.H. Sun, J. Xie, M.J. Li, Y.P. Yang, J.Z. Liu. Perspective of S- CO2 power cycles, Energy 186 (2019) 115831. https://doi.org/10.1016/j.energy.2019.07.161
  32. H. Yu, Y.M. Wei, B.J. Tang, Z.F. Mi, S.Y. Pan, Assessment on the research trend of low-carbon energy technology investment: a bibliometric analysis, Appl. Energy 184 (2016) 960-970. https://doi.org/10.1016/j.apenergy.2016.07.129
  33. K. Saikia, M. Valles, A. Fabregat, R. Saez, D. Boer, A bibliometric analysis of trends in solar cooling technology, Sol. Energy 199 (2020) 100-114. https://doi.org/10.1016/j.solener.2020.02.013
  34. Y. Wang, N. Lai, J. Zuo, G.Y. Chen, H.B. Du, Characteristics and trends of research on waste-to-energy incineration: a bibliometric analysis, 1999-2015, Renew. Sustain. Energy Rev. 66 (2016) 95-104. https://doi.org/10.1016/j.rser.2016.07.006
  35. G.Z. Mao, H.Y. Zou, G.Y. Chen, H.B. Du, J. Zuo, Past, current and future of biomass energy research: a bibliometric analysis, Renew. Sustain. Energy Rev. 52 (2015) 1823-1833. https://doi.org/10.1016/j.rser.2015.07.141
  36. M. Imran, F. Haglind, M. Asim, J.Z. Alvi, Recent research trends in organic Rankine cycle technology: a bibliometric approach, Renew. Sustain. Energy Rev. 81 (2018) 552-562. https://doi.org/10.1016/j.rser.2017.08.028
  37. O. Persson, Bibexcel: a Toolbox for Bibliometricians, vol. 24, 2008, p. 2018. Accessed: Mar.
  38. C.K. Ho, B.D. Iverson, Review of high-temperature central receiver designs for concentrating solar power, Renew. Sustain. Energy Rev. 29 (2014) 835-846. https://doi.org/10.1016/j.rser.2013.08.099
  39. B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energy 111 (2013) 957-970. https://doi.org/10.1016/j.apenergy.2013.06.020
  40. C.S. Turchi, Z. Ma, T.W. Neises, M.J. Wagner, Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems, J. Sol. Energy Eng. 135 (4) (2013).
  41. V. Dostal, P. Hejzlar, M.J. Driscoll, High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors, Nucl. Technol. 154 (3) (2006) 265-282. https://doi.org/10.13182/NT154-265
  42. N. Zhang, N. Lior, A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization, Energy 31 (10-11) (2006) 1666-1679. https://doi.org/10.1016/j.energy.2005.05.006
  43. Y. Le Moullec, Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy 49 (2013) 32-46. https://doi.org/10.1016/j.energy.2012.10.022
  44. Y. Kim, C. Kim, D. Favrat, Transcritical or supercritical CO2 cycles using both low-and high-temperature heat sources, Energy 43 (1) (2012) 402-415. https://doi.org/10.1016/j.energy.2012.03.076
  45. A. Moisseytsev, J.J. Sienicki, Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor, Nucl. Eng. Des. 239 (7) (2009) 1362-1371. https://doi.org/10.1016/j.nucengdes.2009.03.017
  46. R.V. Padilla, Y.C.S. Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348-365. https://doi.org/10.1016/j.apenergy.2015.03.090
  47. J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy 34 (9) (2009) 1172-1178. https://doi.org/10.1016/j.energy.2009.04.030
  48. F.A. Al-Sulaiman, M. Atif, Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower, Energy 82 (2015) 61-71. https://doi.org/10.1016/j.energy.2014.12.070
  49. A.D. Akbari, S.M. Mahmoudi, Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy 78 (2014) 501-512. https://doi.org/10.1016/j.energy.2014.10.037
  50. M.R. Gomez, R.F. Garcia, J.R. G omez, J.C. Carril, Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process, Renew. Sustain. Energy Rev. 38 (2014) 781-795. https://doi.org/10.1016/j.rser.2014.07.029
  51. Y.S. Ho, Comments on "Past, current and future of biomass energy research: a bibliometric analysis" by Mao et al, Renew. Sustain. Energy Rev. 82 (2015) 4235-4237, 2018. https://doi.org/10.1016/j.rser.2017.04.120
  52. K. Brun, P. Friedman, R. Dennis, Fundamentals and Applications of Supercritical Carbon Dioxide (S-CO2) Based Power Cycles, Woodhead publishing, 2017.
  53. C.M. Mendez Cruz, G.E. Rochau, sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2018.
  54. K. Wang, Y.L. He, Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling, Energy Convers. Manag. 135 (2017) 336-350. https://doi.org/10.1016/j.enconman.2016.12.085
  55. M.T. Dunham, B.D. Iverson, High-efficiency thermodynamic power cycles for concentrated solar power systems, Renew. Sustain. Energy Rev. 30 (2014) 758-770. https://doi.org/10.1016/j.rser.2013.11.010
  56. Sun shot. https://www.energy.gov/eere/solar/downloads/sunshot-initiative2030-goals-paper-and-graphics, 2003 last visited June 28,2020.
  57. H.B. Qi, N. Gui, X.T. Yang, J.Y. Tu, S.Y. Jiang, The application of supercritical CO2 in nuclear engineering: a review, J. Comput. Multiph. Flows 10 (4) (2018) 149-158. https://doi.org/10.1177/1757482x18765377
  58. D.H. Liang, Y.L. Zhang, Q.X. Guo, D.X. Shen, J.F. Huang, Modeling and analysis of nuclear reactor system using supercritical-CO2 Brayton cycle, J. Xiamen Univ. 5 (2015) 4.
  59. M. Benjelloun, G. Doulgeris, R. Singh, A method for techno-economic analysis of supercritical carbon dioxide cycles for new generation nuclear power plants, Proc. IME J. Power Energy 226 (3) (2012) 372-383. https://doi.org/10.1177/0957650911429643
  60. Y. Ahn, M.S. Kim, J.I. Lee. S-CO2 cycle design and control strategy for the SFR application, in: Proceedings of the 5th International SymposiumeSupercritical CO2 Power Cycles, 2016. San Antonio, TX, USA.
  61. G.A. Johnson, M.W. McDowell, G.M. O'Connor, C.G. Sonwane, G. Subbaraman, Supercritical CO2 cycle development at pratt and whitney rocketdyne, in: Supercritical CO2 Power Symposium, 2011. Boulder, Colorado, May 24-25.
  62. R.A. Bidkar, A. Mann, R. Singh, E. Sevincer, S. Cich, M. Day, C. Kulhanek, A. Thatte, A. Peter, D. Hofer, Conceptual designs of 50MWe and 450MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 1: cycle and turbine, in: 5th International Symposium-Supercritical CO, 2016.
  63. J.L. Xu, E.H. Sun, M.J. Li, H. Liu, B.G. Zhu, Key issues and solution strategies for supercritical carbon dioxide coal fired power plant, Energy 157 (2018) 227-246. https://doi.org/10.1016/j.energy.2018.05.162
  64. M. Marchionni, G. Bianchi, K.M. Tsamos, S.A. Tassou, Techno-economic comparison of different cycle architectures for high temperature waste heat to power conversion systems using CO2 in supercritical phase, Energy Procedia 123 (2017) 305-312. https://doi.org/10.1016/j.egypro.2017.07.253
  65. A.F. Yu, W. Su, X.X. Lin, N.J. Zhou, L. Zhao, Thermodynamic analysis on the combination of supercritical carbon dioxide power cycle and transcritical carbon dioxide refrigeration cycle for the waste heat recovery of shipboard, Energy Convers. Manag. 221 (2020) 113214. https://doi.org/10.1016/j.enconman.2020.113214
  66. G. Bianchi, S.S. Saravi, R. Loeb, K.M. Tsamos, M. Marchionni, A. Leroux, S.A. Tassou, Design of a high-temperature heat to power conversion facility for testing supercritical CO2 equipment and packaged power units, Energy Procedia 161 (2019) 421-428. https://doi.org/10.1016/j.egypro.2019.02.109
  67. R. O'hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, John Wiley & Sons, 2016.
  68. S.J. Bae, Y. Ahn, J. Lee, J.I. Lee, Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application, J. Power Sources 270 (2014) 608-618. https://doi.org/10.1016/j.jpowsour.2014.07.121
  69. D. Sanchez, J.M. de Escalona, R. Chacartegui, A. Munoz, T. Sanchez, A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology, J. Power Sources 196 (9) (2011) 4347-4354. https://doi.org/10.1016/j.jpowsour.2010.09.091
  70. E. Ruiz-Casanova, C. Rubio-Maya, J.J. Pacheco-Ibarra, V.M. Ambriz-Diaz, C.E. Romero, X.C. Wang, Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources, Energy Convers. Manag. 216 (2020) 112978. https://doi.org/10.1016/j.enconman.2020.112978
  71. S.A. Wright, T.M. Conboy, G.E. Rochau, Overview of supercritical CO2 power cycle development at Sandia National Laboratories, in: University Turbine Systems Research Workshop, Oct. 2011. Columbus, OH.
  72. K. Wang, Y.L. He, H.H. Zhu, Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts, Appl. Energy 195 (2017) 819-836. https://doi.org/10.1016/j.apenergy.2017.03.099
  73. G. Manente, F.M. Fortuna, Supercritical CO2 power cycles for waste heat recovery: a systematic comparison between traditional and novel layouts with dual expansion, Energy Convers. Manag. 197 (2019) 111777. https://doi.org/10.1016/j.enconman.2019.111777
  74. Y. Wu, X. Wang, Y. Yang, Y. Dai, A Combined Cooling and Power System of Supercritical/transcritical CO2 Cycle with Liquefied Natural Gas as Cool Source. Hsi-An Chiao Tung Ta Hsueh/J Xi'an Jiaotong Univ, vol. 49, 2015.
  75. X.R. Wang, Y.P. Dai, Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: a comparative study, Appl. Energy 170 (2016) 193-207. https://doi.org/10.1016/j.apenergy.2016.02.112
  76. X.R. Wang, Y. Yang, Y. Zheng, Y.P. Dai, Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application, Energy 119 (2017) 971-982. https://doi.org/10.1016/j.energy.2016.11.044
  77. X.R. Wang, J.F. Wang, P. Zhao, Y.P. Dai, Thermodynamic comparison and optimization of supercritical CO2 Brayton cycles with a bottoming transcritical CO2 cycle, J. Energy Eng. 142 (3) (2016), 04015028. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000292
  78. X.R. Wang, Y. Wu, J.F. Wang, Y.P. Dai, D.M. Xie, Thermo-economic analysis of a recompression supercritical CO2 cycle combined with a transcritical CO2 cycle, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2015.
  79. S.M. Besarati, D. Yogi Goswami, Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications, J. Sol. Energy Eng. 136 (1) (2014).
  80. S.J. Bae, Y. Ahn, J. Lee, J.I. Lee, Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide rankine cycle combined fuel cell, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2014.
  81. D. Sanchez, B.M. Brenes, J.M. Mu noz de Escalona, R. Chacartegui, Non-conventional combined cycle for intermediate temperature systems, Int. J. Energy Res. 37 (5) (2013) 403-411. https://doi.org/10.1002/er.2945
  82. S.M. S Mahmoudi, A. D Akbari, M.A. Rosen, Thermoeconomic analysis and optimization of a new combined supercritical carbon dioxide recompression Brayton/Kalina cycle, Sustainability 8 (10) (2016) 1079. https://doi.org/10.3390/su8101079
  83. C. Wu, S.S. Wang, J. Li, Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants, Energy Convers. Manag. 171 (2018) 936-952. https://doi.org/10.1016/j.enconman.2018.06.041
  84. Y.M. Zhao, L.F. Zhao, B. Wang, S.J. Zhang, J.L. Chi, Y.H. Xiao, Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle, Appl. Energy 217 (2018) 480-495. https://doi.org/10.1016/j.apenergy.2018.02.088
  85. H. Hu, S.Q. Liang, Y.Y. Jiang, C.H. Guo, Y.X. Guo, Y.M. Zhu, H.F. Cai, Thermodynamic and exergy analysis of 2 MW S-CO2 Brayton cycle under full/partial load operating conditions, Energy Convers. Manag. 211 (2020) 112786. https://doi.org/10.1016/j.enconman.2020.112786
  86. T. Neises, C. Turchi, A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications, Energy Procedia 49 (2014) 1187-1196. https://doi.org/10.1016/j.egypro.2014.03.128
  87. C. Xu, T.T. Xin, X.S. Li, S.K. Li, Y. Sun, W.Y. Liu, Y.P. Yang, A thermodynamic analysis of a solar hybrid coal-based direct-fired supercritical carbon dioxide power cycle, Energy Convers. Manag. 196 (2019) 77-91. https://doi.org/10.1016/j.enconman.2019.06.002
  88. S.H. Park, J.Y. Kim, M.K. Yoon, D.R. Rhim, C.S. Yeom, Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle, Appl. Therm. Eng. 130 (2018) 611-623. https://doi.org/10.1016/j.applthermaleng.2017.10.145
  89. G.V. Ochoa, J.D. Forero, J.P. Rojas, A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms, Heliyon 6 (6) (2020), 04136.
  90. J. Zhou, P. Ling, S. Su, J. Xu, K. Xu, Y. Wang, S. Hu, M. Zhu, J. Xiang, Exergy analysis of a 1000 MW single reheat advanced supercritical carbon dioxide coal-fired partial flow power plant, Fuel 255 (2019) 115777. https://doi.org/10.1016/j.fuel.2019.115777
  91. Q.H. Deng, D. Wang, H. Zhao, W.T. Huang, S. Shao, Z.P. Feng, Study on performances of supercritical CO2 recompression Brayton cycles with multiobjective optimization, Appl. Therm. Eng. 114 (2017) 1335-1342. https://doi.org/10.1016/j.applthermaleng.2016.11.055
  92. X.Y. Wei, V. Manovic, D.P. Hanak, Techno-economic assessment of coal-or biomass-fired oxy-combustion power plants with supercritical carbon dioxide cycle, Energy Convers. Manag. 221 (2020) 113143. https://doi.org/10.1016/j.enconman.2020.113143
  93. K. Mohammadi, J.G. McGowan, M. Saghafifar, Thermoeconomic analysis of multi-stage recuperative Brayton power cycles: Part I-hybridization with a solar power tower system, Energy Convers. Manag. 185 (2019) 898-919. https://doi.org/10.1016/j.enconman.2019.02.012
  94. Q. Zhang, R.M. Ogren, S.C. Kong, Thermo-economic analysis and multiobjective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for offshore gas turbine application, Energy Convers. Manag. 172 (2018) 212-227. https://doi.org/10.1016/j.enconman.2018.07.019
  95. J. Song, X.Y. Li, X.D. Ren, H. Tian, G.Q. Shu, C.W. Gu, C.N. Markides, Thermodynamic and economic investigations of transcritical CO2-cycle systems with integrated radial-inflow turbine performance predictions, Appl. Therm. Eng. 165 (2020) 114604. https://doi.org/10.1016/j.applthermaleng.2019.114604
  96. T.M. Conboy, S.A. Wright, D.E. Ames, T.G. Lewis, CO2-Based Mixtures as Working Fluids for Geothermal Turbines, 2012, p. 87185. Albuquerque, New Mexico.
  97. L. Vesely, V. Dostal, J. Stepanek, Effect of gaseous admixtures on cycles with supercritical carbon dioxide, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2016.
  98. L. Vesely, K. Manikantachari, S. Vasu, J. Kapat, V. Dostal, S. Martin, Effect of impurities on compressor and cooler in supercritical CO2 cycles, J. Energy Resour. Technol. 141 (1) (2019).
  99. L. Hu, D.Q. Chen, Y.P. Huang, L. Li, Y.D. Cao, D.W. Yuan, J.F. Wang, L.M. Pan, Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor, Energy 89 (2015) 874-886. https://doi.org/10.1016/j.energy.2015.06.029
  100. A.F. Yu, W. Su, L. Zhao, X.X. Lin, N.J. Zhou, New knowledge on the performance of supercritical Brayton cycle with CO2-based mixtures, Energies 13 (7) (2020).
  101. W.S. Jeong, Y.H. Jeong, Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications, Nucl. Eng. Des. 262 (2013) 12-20. https://doi.org/10.1016/j.nucengdes.2013.04.006
  102. W.S. Jeong, J.I. Lee, Y.H. Jeong, Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR, Nucl. Eng. Des. 241 (2011) 2128-2137. https://doi.org/10.1016/j.nucengdes.2011.03.043
  103. S. Baik, J.I. Lee, Preliminary study of supercritical CO2 mixed with gases for power cycle in warm environments, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2018.
  104. J.Q. Guo, M.J. Li, J.L. Xu, J.J. Yan, K. Wang, Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems, Energy 173 (2019) 785-798. https://doi.org/10.1016/j.energy.2019.02.008
  105. Y.G. Ma, M. Liu, J.J. Yan, J.P. Liu, Performance investigation of a novel closed Brayton cycle using supercritical CO2-based mixture as working fluid integrated with a LiBr absorption chiller, Appl. Therm. Eng. 141 (2018) 531-547. https://doi.org/10.1016/j.applthermaleng.2018.06.008
  106. G.D. Huang, G.Q. Shu, H. Tian, L.F. Shi, W.L. Zhuge, J. Zhang, M.A.R. Atik, Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery, Appl. Energy 257 (2020) 113997. https://doi.org/10.1016/j.apenergy.2019.113997
  107. J. Moore, K. Brun, N. Evans, C. Kalra, Development of 1 MWe supercritical CO2 test loop, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2015.
  108. T.J. Held, Initial test results of a megawatt-class supercritical CO2 heat engine, in: The 4th International Symposium-Supercritical CO2 Power Cycles, 2014.
  109. T.J. Held, Supercritical CO2 cycles for gas turbine combined cycle power plants, Power Gen Int (2015).
  110. J.F. Wang, Y.M. Guo, K.H. Zhou, J.X. Xia, Y. Li, P. Zhao, Y.P. Dai, Design and performance analysis of compressor and turbine in supercritical CO2 power cycle based on system-component coupled optimization, Energy Convers. Manag. 221 (2020) 113179. https://doi.org/10.1016/j.enconman.2020.113179
  111. S.S. Saravi, S.A. Tassou, Diffuser performance of centrifugal compressor in supercritical CO2 power systems, Energy Procedia 161 (2019) 438-445. https://doi.org/10.1016/j.egypro.2019.02.079
  112. M. Utamura, T. Fukuda, M. Aritomi, Aerodynamic characteristics of a centrifugal compressor working in supercritical carbon dioxide, Energy Procedi 14 (2012) 1149-1155. https://doi.org/10.1016/j.egypro.2011.12.1068
  113. S.G. Kim, J. Lee, Y. Ahn, J.I. Lee, Y. Addad, B. Ko, CFD investigation of a centrifugal compressor derived from pump technology for supercritical carbon dioxide as a working fluid, J. Supercrit. Fluids 86 (2014) 160-171. https://doi.org/10.1016/j.supflu.2013.12.017
  114. S.S. Saravi, S.A. Tassou, An investigation into sCO2 compressor performance prediction in the supercritical region for power systems, Energy Procedia 161 (2019) 403-411. https://doi.org/10.1016/j.egypro.2019.02.098
  115. C. Lettieri, D. Yang, Z. Spakovszky, An investigation of condensation effects in supercritical carbon dioxide compressors, J. Eng. Gas Turbines Power 137 (8) (2015).
  116. H.Z. Li, Y.F. Zhang, M.Y. Yao, Y. Yang, W.L. Han, W.G. Bai, Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop, Energy 174 (2019) 792-804. https://doi.org/10.1016/j.energy.2019.02.178
  117. H. Kim, H.J. Lee, C. Jang, Evaluation of tensile property of austenitic alloys exposed to high-temperature S-CO2 environment, Trans. Korean Soc. Mech. Eng. A 38 (12) (2014) 1415-1420. https://doi.org/10.3795/KSME-A.2014.38.12.1415
  118. M. Aritomi, T. Ishizuka, Y. Muto, N. Tsuzuki, Performance test results of a supercritical CO2 compressor used in a new gas turbine generating system, J. Power Energy Syst. 5 (1) (2011) 45-59. https://doi.org/10.1299/jpes.5.45
  119. H.S. Pham, N. Alpy, J.H. Ferrasse, O. Boutin, M. Tothill, J. Quenaut, O. Gastaldi, T. Cadiou, M. Saez, An approach for establishing the performance maps of the sc-CO2 compressor: development and qualification by means of CFD simulations, Int. J. Heat Fluid Flow 61 (2016) 379-394. https://doi.org/10.1016/j.ijheatfluidflow.2016.05.017
  120. L. Chai, S.A. Tassou, A review of printed circuit heat exchangers for supercritical CO2 and Helium Brayton cycles, Therm. Sci. Eng. Progr. (2020) 100543. https://doi.org/10.1016/j.tsep.2020.100543
  121. M. Saeed, M.H. Kim, Thermal and hydraulic performance of SCO2 PCHE with different fin configurations, Appl. Therm. Eng. 127 (2017) 975-985. https://doi.org/10.1016/j.applthermaleng.2017.08.113
  122. Y.J. Baik, S. Jeon, B. Kim, D. Jeon, C. Byon, Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors, Int. J. Heat Mass Tran. 114 (2017) 809-815. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.119
  123. J.D. Ortega, S.D. Khivsara, J.M. Christian, C.K. Ho, Design requirements for direct supercritical carbon dioxide receiver development and testing, in: Energy Sustainability, American Society of Mechanical Engineers, 2015.
  124. C.R. Zhao, Q.F. Liu, Z. Zhang, P.X. Jiang, H.L. Bo, Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows, J. Supercrit. Fluids 138 (2018) 154-166. https://doi.org/10.1016/j.supflu.2018.03.014
  125. C. Yu, J.L. Xu, Y.S. Sun, Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators, Appl. Therm. Eng. 88 (2015) 2-13. https://doi.org/10.1016/j.applthermaleng.2014.11.031
  126. D. Huang, Z. Wu, B. Sunden, W. Li, A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress, Appl. Energy 162 (2016) 494-505. https://doi.org/10.1016/j.apenergy.2015.10.080
  127. L.F. Cabeza, A. de Gracia, A.I. Fernandez, M.M. Farid, Supercritical CO 2 as heat transfer fluid: a review, Appl. Therm. Eng. 125 (2017) 799-810. https://doi.org/10.1016/j.applthermaleng.2017.07.049
  128. T. Conboy, J. Pasch, D. Fleming, Control of a supercritical CO2 recompression Brayton cycle demonstration loop, J. Eng. Gas Turbines Power 135 (11) (2013).
  129. S.A. Wright, R.F. Radel, M.E. Vernon, G.E. Rochau, P.S. Pickard, Operation and Analysis of a Supercritical CO2 Brayton Cycle. Sandia Report SAND2010-0171, 2010, pp. 1-101.
  130. J. Moore, M. Day, S. Cich, D. Hofer, Testing of A 10 MWe supercritical CO2 turbine, in: Proceedings of the 47th Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M Engineering Experiment Station, 2018.
  131. A. Rimpel, N. Smith, J. Wilkes, H. Delgado, T. Allison, R.A. Bidkar, U. Kumar, D. Trivedi, Test rig design for large supercritical CO2 turbine seals, in: The 6th International Supercritical CO2 Power Cycles Symposium, 2018. Pennsylvania, USA; march 27~29.
  132. R.J. Allam, J.E. Fetvedt, B.A. Forrest, D.A. Freed, The oxy-fuel, supercritical CO2 Allam Cycle: new cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2014.
  133. J. Tollefson, Innovative zero-emissions power plant begins battery of tests, Nature 557 (7706) (2018) 622-624. https://doi.org/10.1038/d41586-018-05247-1
  134. J. Cho, H. Shin, J. Cho, H.S. Ra, C. Roh, B. Lee, G. Lee, B. Choi, Y.J. Baik, Preliminary power generating operation of the supercritical carbon dioxide power cycle experimental test loop with a turbo-generator, in: Proceedings of the 6th International Symposium-Supercritical CO2 Power Cycles, 2018. Pittsburgh, PA, USA.
  135. J.H. Park, S.W. Bae, H.S. Park, J.E. Cha, M.H. Kim, Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS, Energy 147 (2018) 1030-1043. https://doi.org/10.1016/j.energy.2017.12.092
  136. M. Utamura, H. Hasuike, K. Ogawa, T. Yamamoto, T. Fukushima, T. Watanabe, T. Himeno, Demonstration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2012.
  137. B.G. Zhu, J.L. Xu, X.M. Wu, J. Xie, M.J. Li, Supercritical "boiling" number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes, Int. J. Therm. Sci. 136 (2019) 254-266. https://doi.org/10.1016/j.ijthermalsci.2018.10.032
  138. Sun shot. https://www.energy.gov/eere/solar/sunshot-initiative last visited July 2, 2020.
  139. A supercritical CO2-cooled small modular reactor. https://www.powermag.com/supercritical-cO2cooled-small-modular-reactor/ last visited July 2, 2020.
  140. Research on basic theory and key technology of coal-fired S-CO2 power generation. http://www.most.gov.cn/kjbgz/201807/t20180727_140883.htm last visited July 2, 2020.
  141. 10-MW supercritical carbon dioxide demonstration. https://www.powermag.com/10-mw-supercritical-carbon-dioxide-demonstration-project-breaks-ground/ last visited July 2, 2020.
  142. SCARABEUS project. https://www.scarabeusproject.eu/ last visited July 2, 2020.

Cited by

  1. Thermo-economic analysis of a supercritical CO2-based waste heat recovery system vol.312, 2021, https://doi.org/10.1051/e3sconf/202131208022
  2. Overview and outlook of research and innovation in energy systems with carbon dioxide as the working fluid vol.195, 2021, https://doi.org/10.1016/j.applthermaleng.2021.117180
  3. Bibliometric Analysis on Supercritical CO2 Power Cycles for Concentrating Solar Power Applications vol.23, pp.10, 2021, https://doi.org/10.3390/e23101289
  4. Performances of Transcritical Power Cycles with CO2-Based Mixtures for the Waste Heat Recovery of ICE vol.23, pp.11, 2021, https://doi.org/10.3390/e23111551
  5. A comprehensive review of micro-scale expanders for carbon dioxide related power and refrigeration cycles vol.201, pp.no.pa, 2022, https://doi.org/10.1016/j.applthermaleng.2021.117722
  6. Performance study of solar tower aided supercritical CO2 coal-fired power generation system with different schemes vol.252, 2021, https://doi.org/10.1016/j.enconman.2021.115113
  7. Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures vol.239, pp.no.pd, 2021, https://doi.org/10.1016/j.energy.2021.122216
  8. Design Optimization of Plate-Fin Heat Exchanger in a Gas Turbine and Supercritical Carbon Dioxide Combined Cycle with Thermal Oil Loop vol.12, pp.1, 2022, https://doi.org/10.3390/app12010042