Browse > Article
http://dx.doi.org/10.1016/j.net.2020.08.005

Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review  

Yu, Aofang (School of Energy Science and Engineering, Central South University)
Su, Wen (School of Energy Science and Engineering, Central South University)
Lin, Xinxing (Institute of Science and Technology, China Three Gorges Corporation)
Zhou, Naijun (School of Energy Science and Engineering, Central South University)
Publication Information
Nuclear Engineering and Technology / v.53, no.3, 2021 , pp. 699-714 More about this Journal
Abstract
Supercritical CO2 (S-CO2) Brayton cycle has been applied to various heat sources in recent decades, owing to the characteristics of compact structure and high efficiency. Understanding the research development in this emerging research field is crucial for future study. Thus, a bibliometric approach is employed to analyze the scientific publications of S-CO2 cycle field from 2000 to 2019. In Scopus database, there were totally 724 publications from 1378 authors and 543 institutes, which were distributed over 55 countries. Based on the software-BibExcel, these publications were analyzed from various aspects, such as major research areas, affiliations and keyword occurrence frequency. Furthermore, parameters such as citations, hot articles were also employed to evaluate the research output of productive countries, institutes and authors. The analysis showed that each paper has been cited 13.39 times averagely. United States was identified as the leading country in S-CO2 research followed by China and South Korea. Based on the contents of publications, existing researches on S-CO2 are briefly reviewed from the five aspects, namely application, cycle configurations and modeling, CO2-based mixtures, system components, and experiments. Future development is suggested to accelerate the commercialization of S-CO2 power system.
Keywords
Supercritical $CO_2$; Brayton cycle; Bibliometric; Research trends;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Mohammadi, J.G. McGowan, M. Saghafifar, Thermoeconomic analysis of multi-stage recuperative Brayton power cycles: Part I-hybridization with a solar power tower system, Energy Convers. Manag. 185 (2019) 898-919.   DOI
2 J. Song, X.Y. Li, X.D. Ren, H. Tian, G.Q. Shu, C.W. Gu, C.N. Markides, Thermodynamic and economic investigations of transcritical CO2-cycle systems with integrated radial-inflow turbine performance predictions, Appl. Therm. Eng. 165 (2020) 114604.   DOI
3 L. Vesely, K. Manikantachari, S. Vasu, J. Kapat, V. Dostal, S. Martin, Effect of impurities on compressor and cooler in supercritical CO2 cycles, J. Energy Resour. Technol. 141 (1) (2019).
4 L. Hu, D.Q. Chen, Y.P. Huang, L. Li, Y.D. Cao, D.W. Yuan, J.F. Wang, L.M. Pan, Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor, Energy 89 (2015) 874-886.   DOI
5 T.T. Xin, C. Xu, Y.P. Yang, A general and simple method for evaluating the performance of the modified steam Rankine cycle: thermal cycle splitting analytical method, Energy Convers. Manag. 210 (2020) 112712.   DOI
6 Y.P. Liu, Y. Wang, D.G. Huang, Supercritical CO2 Brayton cycle: a state-of-th-eart review, Energy 189 (2019) 115900.   DOI
7 I. Dincer, C. Zamfirescu, Advanced Power Generation Systems, Elsevier Inc, 2014.
8 Y.N. Peng, W. Su, N.J. Zhou, L. Zhao, How to evaluate the performance of subcritical Organic Rankine Cycle from key properties of working fluids by group contribution methods? Energy Convers. Manag. 221 (2020) 113204.   DOI
9 W. Su, L. Zhao, S. Deng, W.C. Xu, Z.X. Yu, A limiting efficiency of subcritical Organic Rankine cycle under the constraint of working fluids, Energy 143 (2018) 458-466.   DOI
10 Y. Koc, H. Yagl i, A. Koc, Exergy analysis and performance improvement of a subcritical/supercritical organic rankine cycle (ORC) for exhaust gas waste heat recovery in a biogas fuelled combined heat and power (CHP) engine through the use of regeneration, Energies 12 (4) (2019) 575.   DOI
11 F. Rovense, M.A. Reyes-Belmonte, J. Gonz alez-Aguilar, M. Amelio, S. Bova, M. Romero, Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system, Energy 173 (2019) 971-984.   DOI
12 J. Sarkar, Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion, Renew. Sustain. Energy Rev. 48 (2015) 434-451.   DOI
13 G. Sulzer, Verfahren zur erzeugung von arbeit aus warme, Swiss Patent (1950) 269599.
14 V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.
15 Y. Wang, G.R. Guenette, P. Hejzlar, M.J. Driscoll, Aerodynamic Design of Turbomachinery for 300 MWe Supercritical Carbon Dioxide Brayton Power Conversion System, Massachusetts Institute of Technology, Cambridge, MA, 2005. Report No. MIT-GFR-022.
16 S. Duniam, A. Veeraragavan, Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power, Energy 187 (2019) 115992.   DOI
17 M.S. Kim, Y. Ahn, B. Kim, J.I. Lee, Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle, Energy 111 (2016) 893-909.   DOI
18 R. Allam, S. Martin, B. Forrest, J. Fetvedt, X.J. Lu, D. Freed, G.W. Brown Jr., T. Sasaki, M. Itoh, J. Manning, Demonstration of the Allam Cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture, Energy Procedia 114 (2017) 5948-5966.   DOI
19 M. Aritomi, T. Ishizuka, Y. Muto, N. Tsuzuki, Performance test results of a supercritical CO2 compressor used in a new gas turbine generating system, J. Power Energy Syst. 5 (1) (2011) 45-59.   DOI
20 P. Kumar, K. Srinivasan, Carbon dioxide based power generation in renewable energy systems, Appl. Therm. Eng. 109 (2016) 831-840.   DOI
21 F.A. Al-Sulaiman, M. Atif, Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower, Energy 82 (2015) 61-71.   DOI
22 Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, J.E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol. 47 (6) (2015) 647-661.   DOI
23 H. Yu, Y.M. Wei, B.J. Tang, Z.F. Mi, S.Y. Pan, Assessment on the research trend of low-carbon energy technology investment: a bibliometric analysis, Appl. Energy 184 (2016) 960-970.   DOI
24 E.G. Feher, The supercritical thermodynamic power cycle, Energy Convers. 8 (2) (1968) 85-90.   DOI
25 10-MW supercritical carbon dioxide demonstration. https://www.powermag.com/10-mw-supercritical-carbon-dioxide-demonstration-project-breaks-ground/ last visited July 2, 2020.
26 S.S. Saravi, S.A. Tassou, Diffuser performance of centrifugal compressor in supercritical CO2 power systems, Energy Procedia 161 (2019) 438-445.   DOI
27 S.G. Kim, J. Lee, Y. Ahn, J.I. Lee, Y. Addad, B. Ko, CFD investigation of a centrifugal compressor derived from pump technology for supercritical carbon dioxide as a working fluid, J. Supercrit. Fluids 86 (2014) 160-171.   DOI
28 S.S. Saravi, S.A. Tassou, An investigation into sCO2 compressor performance prediction in the supercritical region for power systems, Energy Procedia 161 (2019) 403-411.   DOI
29 H.Z. Li, Y.F. Zhang, M.Y. Yao, Y. Yang, W.L. Han, W.G. Bai, Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop, Energy 174 (2019) 792-804.   DOI
30 G.V. Ochoa, J.D. Forero, J.P. Rojas, A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms, Heliyon 6 (6) (2020), 04136.
31 S. Baik, J.I. Lee, Preliminary study of supercritical CO2 mixed with gases for power cycle in warm environments, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2018.
32 G.D. Huang, G.Q. Shu, H. Tian, L.F. Shi, W.L. Zhuge, J. Zhang, M.A.R. Atik, Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery, Appl. Energy 257 (2020) 113997.   DOI
33 T.J. Held, Supercritical CO2 cycles for gas turbine combined cycle power plants, Power Gen Int (2015).
34 M. Utamura, T. Fukuda, M. Aritomi, Aerodynamic characteristics of a centrifugal compressor working in supercritical carbon dioxide, Energy Procedi 14 (2012) 1149-1155.   DOI
35 C. Lettieri, D. Yang, Z. Spakovszky, An investigation of condensation effects in supercritical carbon dioxide compressors, J. Eng. Gas Turbines Power 137 (8) (2015).
36 M. Saeed, M.H. Kim, Thermal and hydraulic performance of SCO2 PCHE with different fin configurations, Appl. Therm. Eng. 127 (2017) 975-985.   DOI
37 C.R. Zhao, Q.F. Liu, Z. Zhang, P.X. Jiang, H.L. Bo, Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows, J. Supercrit. Fluids 138 (2018) 154-166.   DOI
38 L.F. Cabeza, A. de Gracia, A.I. Fernandez, M.M. Farid, Supercritical CO 2 as heat transfer fluid: a review, Appl. Therm. Eng. 125 (2017) 799-810.   DOI
39 J. Tollefson, Innovative zero-emissions power plant begins battery of tests, Nature 557 (7706) (2018) 622-624.   DOI
40 H. Kim, H.J. Lee, C. Jang, Evaluation of tensile property of austenitic alloys exposed to high-temperature S-CO2 environment, Trans. Korean Soc. Mech. Eng. A 38 (12) (2014) 1415-1420.   DOI
41 H.S. Pham, N. Alpy, J.H. Ferrasse, O. Boutin, M. Tothill, J. Quenaut, O. Gastaldi, T. Cadiou, M. Saez, An approach for establishing the performance maps of the sc-CO2 compressor: development and qualification by means of CFD simulations, Int. J. Heat Fluid Flow 61 (2016) 379-394.   DOI
42 Y.J. Baik, S. Jeon, B. Kim, D. Jeon, C. Byon, Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors, Int. J. Heat Mass Tran. 114 (2017) 809-815.   DOI
43 J.D. Ortega, S.D. Khivsara, J.M. Christian, C.K. Ho, Design requirements for direct supercritical carbon dioxide receiver development and testing, in: Energy Sustainability, American Society of Mechanical Engineers, 2015.
44 C. Yu, J.L. Xu, Y.S. Sun, Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators, Appl. Therm. Eng. 88 (2015) 2-13.   DOI
45 M. Utamura, H. Hasuike, K. Ogawa, T. Yamamoto, T. Fukushima, T. Watanabe, T. Himeno, Demonstration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2012.
46 E. Ruiz-Casanova, C. Rubio-Maya, J.J. Pacheco-Ibarra, V.M. Ambriz-Diaz, C.E. Romero, X.C. Wang, Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources, Energy Convers. Manag. 216 (2020) 112978.   DOI
47 G. Manente, F.M. Fortuna, Supercritical CO2 power cycles for waste heat recovery: a systematic comparison between traditional and novel layouts with dual expansion, Energy Convers. Manag. 197 (2019) 111777.   DOI
48 X.R. Wang, Y. Yang, Y. Zheng, Y.P. Dai, Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application, Energy 119 (2017) 971-982.   DOI
49 S.M. Besarati, D. Yogi Goswami, Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications, J. Sol. Energy Eng. 136 (1) (2014).
50 A.D. Akbari, S.M. Mahmoudi, Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy 78 (2014) 501-512.   DOI
51 T. Conboy, J. Pasch, D. Fleming, Control of a supercritical CO2 recompression Brayton cycle demonstration loop, J. Eng. Gas Turbines Power 135 (11) (2013).
52 S.A. Wright, R.F. Radel, M.E. Vernon, G.E. Rochau, P.S. Pickard, Operation and Analysis of a Supercritical CO2 Brayton Cycle. Sandia Report SAND2010-0171, 2010, pp. 1-101.
53 A. Rimpel, N. Smith, J. Wilkes, H. Delgado, T. Allison, R.A. Bidkar, U. Kumar, D. Trivedi, Test rig design for large supercritical CO2 turbine seals, in: The 6th International Supercritical CO2 Power Cycles Symposium, 2018. Pennsylvania, USA; march 27~29.
54 G.A. Johnson, M.W. McDowell, G.M. O'Connor, C.G. Sonwane, G. Subbaraman, Supercritical CO2 cycle development at pratt and whitney rocketdyne, in: Supercritical CO2 Power Symposium, 2011. Boulder, Colorado, May 24-25.
55 R.A. Bidkar, A. Mann, R. Singh, E. Sevincer, S. Cich, M. Day, C. Kulhanek, A. Thatte, A. Peter, D. Hofer, Conceptual designs of 50MWe and 450MWe supercritical CO2 turbomachinery trains for power generation from coal. Part 1: cycle and turbine, in: 5th International Symposium-Supercritical CO, 2016.
56 S.H. Park, J.Y. Kim, M.K. Yoon, D.R. Rhim, C.S. Yeom, Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle, Appl. Therm. Eng. 130 (2018) 611-623.   DOI
57 Q. Zhang, R.M. Ogren, S.C. Kong, Thermo-economic analysis and multiobjective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for offshore gas turbine application, Energy Convers. Manag. 172 (2018) 212-227.   DOI
58 L. Vesely, V. Dostal, J. Stepanek, Effect of gaseous admixtures on cycles with supercritical carbon dioxide, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2016.
59 A.F. Yu, W. Su, L. Zhao, X.X. Lin, N.J. Zhou, New knowledge on the performance of supercritical Brayton cycle with CO2-based mixtures, Energies 13 (7) (2020).
60 Y.S. Ho, Comments on "Past, current and future of biomass energy research: a bibliometric analysis" by Mao et al, Renew. Sustain. Energy Rev. 82 (2015) 4235-4237, 2018.   DOI
61 K. Brun, P. Friedman, R. Dennis, Fundamentals and Applications of Supercritical Carbon Dioxide (S-CO2) Based Power Cycles, Woodhead publishing, 2017.
62 K. Wang, Y.L. He, Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling, Energy Convers. Manag. 135 (2017) 336-350.   DOI
63 M.T. Dunham, B.D. Iverson, High-efficiency thermodynamic power cycles for concentrated solar power systems, Renew. Sustain. Energy Rev. 30 (2014) 758-770.   DOI
64 Sun shot. https://www.energy.gov/eere/solar/downloads/sunshot-initiative2030-goals-paper-and-graphics, 2003 last visited June 28,2020.
65 H.B. Qi, N. Gui, X.T. Yang, J.Y. Tu, S.Y. Jiang, The application of supercritical CO2 in nuclear engineering: a review, J. Comput. Multiph. Flows 10 (4) (2018) 149-158.   DOI
66 M. Benjelloun, G. Doulgeris, R. Singh, A method for techno-economic analysis of supercritical carbon dioxide cycles for new generation nuclear power plants, Proc. IME J. Power Energy 226 (3) (2012) 372-383.   DOI
67 X.R. Wang, Y. Wu, J.F. Wang, Y.P. Dai, D.M. Xie, Thermo-economic analysis of a recompression supercritical CO2 cycle combined with a transcritical CO2 cycle, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2015.
68 D. Huang, Z. Wu, B. Sunden, W. Li, A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress, Appl. Energy 162 (2016) 494-505.   DOI
69 M.H. Ahmadi, M. Alhuyi Nazari, R. Ghasempour, F. Pourfayaz, M. Rahimzadeh, T.Z. Ming, A review on solar-assisted gas turbines, Energy Sci. Eng. 6 (6) (2018) 658-674.   DOI
70 H. Hu, S.Q. Liang, Y.Y. Jiang, C.H. Guo, Y.X. Guo, Y.M. Zhu, H.F. Cai, Thermodynamic and exergy analysis of 2 MW S-CO2 Brayton cycle under full/partial load operating conditions, Energy Convers. Manag. 211 (2020) 112786.   DOI
71 Y. Ahn, M.S. Kim, J.I. Lee. S-CO2 cycle design and control strategy for the SFR application, in: Proceedings of the 5th International SymposiumeSupercritical CO2 Power Cycles, 2016. San Antonio, TX, USA.
72 M.R. Gomez, R.F. Garcia, J.R. G omez, J.C. Carril, Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process, Renew. Sustain. Energy Rev. 38 (2014) 781-795.   DOI
73 S.M. S Mahmoudi, A. D Akbari, M.A. Rosen, Thermoeconomic analysis and optimization of a new combined supercritical carbon dioxide recompression Brayton/Kalina cycle, Sustainability 8 (10) (2016) 1079.   DOI
74 V. Dostal, P. Hejzlar, M.J. Driscoll, The supercritical carbon dioxide power cycle: comparison to other advanced power cycles, Nucl. Technol. 154 (3) (2006) 283-301.   DOI
75 W.S. Jeong, J.I. Lee, Y.H. Jeong, Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR, Nucl. Eng. Des. 241 (2011) 2128-2137.   DOI
76 J.Q. Guo, M.J. Li, J.L. Xu, J.J. Yan, K. Wang, Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems, Energy 173 (2019) 785-798.   DOI
77 J. Moore, K. Brun, N. Evans, C. Kalra, Development of 1 MWe supercritical CO2 test loop, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2015.
78 T.J. Held, Initial test results of a megawatt-class supercritical CO2 heat engine, in: The 4th International Symposium-Supercritical CO2 Power Cycles, 2014.
79 J.F. Wang, Y.M. Guo, K.H. Zhou, J.X. Xia, Y. Li, P. Zhao, Y.P. Dai, Design and performance analysis of compressor and turbine in supercritical CO2 power cycle based on system-component coupled optimization, Energy Convers. Manag. 221 (2020) 113179.   DOI
80 R.J. Allam, J.E. Fetvedt, B.A. Forrest, D.A. Freed, The oxy-fuel, supercritical CO2 Allam Cycle: new cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2014.
81 Y. Wang, N. Lai, J. Zuo, G.Y. Chen, H.B. Du, Characteristics and trends of research on waste-to-energy incineration: a bibliometric analysis, 1999-2015, Renew. Sustain. Energy Rev. 66 (2016) 95-104.   DOI
82 D. Sanchez, J.M. de Escalona, R. Chacartegui, A. Munoz, T. Sanchez, A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology, J. Power Sources 196 (9) (2011) 4347-4354.   DOI
83 A supercritical CO2-cooled small modular reactor. https://www.powermag.com/supercritical-cO2cooled-small-modular-reactor/ last visited July 2, 2020.
84 SCARABEUS project. https://www.scarabeusproject.eu/ last visited July 2, 2020.
85 A.F. Yu, W. Su, X.X. Lin, N.J. Zhou, L. Zhao, Thermodynamic analysis on the combination of supercritical carbon dioxide power cycle and transcritical carbon dioxide refrigeration cycle for the waste heat recovery of shipboard, Energy Convers. Manag. 221 (2020) 113214.   DOI
86 R. O'hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, John Wiley & Sons, 2016.
87 J.L. Xu, E.H. Sun, M.J. Li, H. Liu, B.G. Zhu, Key issues and solution strategies for supercritical carbon dioxide coal fired power plant, Energy 157 (2018) 227-246.   DOI
88 J. Cho, H. Shin, J. Cho, H.S. Ra, C. Roh, B. Lee, G. Lee, B. Choi, Y.J. Baik, Preliminary power generating operation of the supercritical carbon dioxide power cycle experimental test loop with a turbo-generator, in: Proceedings of the 6th International Symposium-Supercritical CO2 Power Cycles, 2018. Pittsburgh, PA, USA.
89 B.G. Zhu, J.L. Xu, X.M. Wu, J. Xie, M.J. Li, Supercritical "boiling" number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes, Int. J. Therm. Sci. 136 (2019) 254-266.   DOI
90 Sun shot. https://www.energy.gov/eere/solar/sunshot-initiative last visited July 2, 2020.
91 Research on basic theory and key technology of coal-fired S-CO2 power generation. http://www.most.gov.cn/kjbgz/201807/t20180727_140883.htm last visited July 2, 2020.
92 O. Persson, Bibexcel: a Toolbox for Bibliometricians, vol. 24, 2008, p. 2018. Accessed: Mar.
93 C.K. Ho, B.D. Iverson, Review of high-temperature central receiver designs for concentrating solar power, Renew. Sustain. Energy Rev. 29 (2014) 835-846.   DOI
94 Q.H. Deng, D. Wang, H. Zhao, W.T. Huang, S. Shao, Z.P. Feng, Study on performances of supercritical CO2 recompression Brayton cycles with multiobjective optimization, Appl. Therm. Eng. 114 (2017) 1335-1342.   DOI
95 W. Su, Y.H. Wang, S. Deng, L. Zhao, D.P. Zhao, Thermodynamic performance comparison of Organic Rankine Cycle between zeotropic mixtures and pure fluids under open heat source, Energy Convers. Manag. 165 (2018) 720-737.   DOI
96 R. Viswanathan, J. Sarver, J.M. Tanzosh, Boiler materials for ultra-supercritical coal power plants-steamside oxidation, J. Mater. Eng. Perform. 15 (3) (2006) 255-274.   DOI
97 W. Su, L. Zhao, S. Deng, Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model, Appl. Energy 202 (2017) 618-627.   DOI
98 W.S. Jeong, Y.H. Jeong, Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications, Nucl. Eng. Des. 262 (2013) 12-20.   DOI
99 S.A. Wright, T.M. Conboy, G.E. Rochau, Overview of supercritical CO2 power cycle development at Sandia National Laboratories, in: University Turbine Systems Research Workshop, Oct. 2011. Columbus, OH.
100 K. Wang, Y.L. He, H.H. Zhu, Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts, Appl. Energy 195 (2017) 819-836.   DOI
101 Y. Wu, X. Wang, Y. Yang, Y. Dai, A Combined Cooling and Power System of Supercritical/transcritical CO2 Cycle with Liquefied Natural Gas as Cool Source. Hsi-An Chiao Tung Ta Hsueh/J Xi'an Jiaotong Univ, vol. 49, 2015.
102 X.R. Wang, Y.P. Dai, Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: a comparative study, Appl. Energy 170 (2016) 193-207.   DOI
103 D.H. Liang, Y.L. Zhang, Q.X. Guo, D.X. Shen, J.F. Huang, Modeling and analysis of nuclear reactor system using supercritical-CO2 Brayton cycle, J. Xiamen Univ. 5 (2015) 4.
104 J. Moore, M. Day, S. Cich, D. Hofer, Testing of A 10 MWe supercritical CO2 turbine, in: Proceedings of the 47th Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M Engineering Experiment Station, 2018.
105 G.D. Perez-Pichel, J.I. Linares, L.E. Herranz, B.Y. Moratilla, Potential application of Rankine and He-Brayton cycles to sodium fast reactors, Nucl. Eng. Des. 241 (8) (2011) 2643-2652.   DOI
106 D. Milani, M.T. Luu, R. McNaughton, A. Abbas, Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: a vital transition for low-carbon power generation industry, Energy Convers. Manag. 148 (2017) 1317-1331.   DOI
107 M. Marchionni, G. Bianchi, S.A. Tassou, Review of supercritical carbon dioxide (S-CO2) technologies for high-grade waste heat to power conversion, SN Appl. Sci. 2 (4) (2020) 1-13.
108 G. Kimzey, Development of a Brayton Bottoming Cycle Using Supercritical Carbon Dioxide as the Working Fluid, Electric Power Research Institute, University Turbine Systems Research Program, Gas Turbine Industrial Fellowship, Palo Alto, CA, 2012.
109 G. Manente, M. Costa, On the conceptual design of novel supercritical CO2 power cycles for waste heat recovery, Energies 13 (2) (2020) 370.   DOI
110 Q. Zhu, Innovative power generation systems using supercritical CO2 cycles, Clean Energy 1 (1) (2017) 68-79.   DOI
111 X.R. Wang, J.F. Wang, P. Zhao, Y.P. Dai, Thermodynamic comparison and optimization of supercritical CO2 Brayton cycles with a bottoming transcritical CO2 cycle, J. Energy Eng. 142 (3) (2016), 04015028.   DOI
112 S.J. Bae, Y. Ahn, J. Lee, J.I. Lee, Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide rankine cycle combined fuel cell, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2014.
113 L. Chai, S.A. Tassou, A review of printed circuit heat exchangers for supercritical CO2 and Helium Brayton cycles, Therm. Sci. Eng. Progr. (2020) 100543.   DOI
114 Y.G. Ma, M. Liu, J.J. Yan, J.P. Liu, Performance investigation of a novel closed Brayton cycle using supercritical CO2-based mixture as working fluid integrated with a LiBr absorption chiller, Appl. Therm. Eng. 141 (2018) 531-547.   DOI
115 C. Wu, S.S. Wang, J. Li, Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants, Energy Convers. Manag. 171 (2018) 936-952.   DOI
116 D. Sanchez, B.M. Brenes, J.M. Mu noz de Escalona, R. Chacartegui, Non-conventional combined cycle for intermediate temperature systems, Int. J. Energy Res. 37 (5) (2013) 403-411.   DOI
117 W. Su, L. Zhao, S. Deng, Developing a performance evaluation model of organic Rankine cycle for working fluids based on the group contribution method, Energy Convers. Manag. 132 (2017) 307-315.   DOI
118 C.M. Mendez Cruz, G.E. Rochau, sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2018.
119 M.J. Li, H.H. Zhu, J.Q. Guo, K. Wang, W.Q. Tao, The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries, Appl. Therm. Eng. 126 (2017) 255-275.   DOI
120 J.L. Xu, C. Liu, E.H. Sun, J. Xie, M.J. Li, Y.P. Yang, J.Z. Liu. Perspective of S- CO2 power cycles, Energy 186 (2019) 115831.   DOI
121 K. Saikia, M. Valles, A. Fabregat, R. Saez, D. Boer, A bibliometric analysis of trends in solar cooling technology, Sol. Energy 199 (2020) 100-114.   DOI
122 G.Z. Mao, H.Y. Zou, G.Y. Chen, H.B. Du, J. Zuo, Past, current and future of biomass energy research: a bibliometric analysis, Renew. Sustain. Energy Rev. 52 (2015) 1823-1833.   DOI
123 M. Imran, F. Haglind, M. Asim, J.Z. Alvi, Recent research trends in organic Rankine cycle technology: a bibliometric approach, Renew. Sustain. Energy Rev. 81 (2018) 552-562.   DOI
124 B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energy 111 (2013) 957-970.   DOI
125 C.S. Turchi, Z. Ma, T.W. Neises, M.J. Wagner, Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems, J. Sol. Energy Eng. 135 (4) (2013).
126 V. Dostal, P. Hejzlar, M.J. Driscoll, High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors, Nucl. Technol. 154 (3) (2006) 265-282.   DOI
127 N. Zhang, N. Lior, A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization, Energy 31 (10-11) (2006) 1666-1679.   DOI
128 Y. Le Moullec, Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy 49 (2013) 32-46.   DOI
129 Y. Kim, C. Kim, D. Favrat, Transcritical or supercritical CO2 cycles using both low-and high-temperature heat sources, Energy 43 (1) (2012) 402-415.   DOI
130 A. Moisseytsev, J.J. Sienicki, Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor, Nucl. Eng. Des. 239 (7) (2009) 1362-1371.   DOI
131 R.V. Padilla, Y.C.S. Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348-365.   DOI
132 J. Zhou, P. Ling, S. Su, J. Xu, K. Xu, Y. Wang, S. Hu, M. Zhu, J. Xiang, Exergy analysis of a 1000 MW single reheat advanced supercritical carbon dioxide coal-fired partial flow power plant, Fuel 255 (2019) 115777.   DOI
133 M. Marchionni, G. Bianchi, K.M. Tsamos, S.A. Tassou, Techno-economic comparison of different cycle architectures for high temperature waste heat to power conversion systems using CO2 in supercritical phase, Energy Procedia 123 (2017) 305-312.   DOI
134 G. Bianchi, S.S. Saravi, R. Loeb, K.M. Tsamos, M. Marchionni, A. Leroux, S.A. Tassou, Design of a high-temperature heat to power conversion facility for testing supercritical CO2 equipment and packaged power units, Energy Procedia 161 (2019) 421-428.   DOI
135 S.J. Bae, Y. Ahn, J. Lee, J.I. Lee, Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application, J. Power Sources 270 (2014) 608-618.   DOI
136 J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy 34 (9) (2009) 1172-1178.   DOI
137 J.H. Park, S.W. Bae, H.S. Park, J.E. Cha, M.H. Kim, Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS, Energy 147 (2018) 1030-1043.   DOI
138 T.M. Conboy, S.A. Wright, D.E. Ames, T.G. Lewis, CO2-Based Mixtures as Working Fluids for Geothermal Turbines, 2012, p. 87185. Albuquerque, New Mexico.
139 Y.M. Zhao, L.F. Zhao, B. Wang, S.J. Zhang, J.L. Chi, Y.H. Xiao, Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle, Appl. Energy 217 (2018) 480-495.   DOI
140 T. Neises, C. Turchi, A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications, Energy Procedia 49 (2014) 1187-1196.   DOI
141 C. Xu, T.T. Xin, X.S. Li, S.K. Li, Y. Sun, W.Y. Liu, Y.P. Yang, A thermodynamic analysis of a solar hybrid coal-based direct-fired supercritical carbon dioxide power cycle, Energy Convers. Manag. 196 (2019) 77-91.   DOI
142 X.Y. Wei, V. Manovic, D.P. Hanak, Techno-economic assessment of coal-or biomass-fired oxy-combustion power plants with supercritical carbon dioxide cycle, Energy Convers. Manag. 221 (2020) 113143.   DOI