• Title/Summary/Keyword: Distance Transform Matrix

Search Result 15, Processing Time 0.027 seconds

Damage detection technique for irregular continuum structures using wavelet transform and fuzzy inference system optimized by particle swarm optimization

  • Hamidian, Davood;Salajegheh, Eysa;Salajegheh, Javad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.457-464
    • /
    • 2018
  • This paper presents a method for detecting damage in irregular 2D and 3D continuum structures based on combination of wavelet transform (WT) with fuzzy inference system (FIS) and particle swarm optimization (PSO). Many damage detection methods study regular structures. This method studies irregular structures and doesn't need response of healthy structures. First the damaged structure is analyzed with finite element methods, and damage response is obtained at the finite element points that have irregular distance, secondly the FIS, which is optimized by PSO is used to obtain responses at points, having equal distance by response at those points that previously obtained by the finite element methods. Then a 2D (for 2D continuum structures) or a 3D (for 3D continuum structures) matrix is performed by equal distance point response. Thirdly, by applying 2D or 3D wavelet transform on 2D or 3D matrix that previously obtained by FIS detail matrix coefficient of WT is obtained. It is shown that detail matrix coefficient can determine the damage zone of the structure by perturbation in the damaged area. In order to illustrate the capability of proposed method some examples are considered.

Improved Face Recognition based on 2D-LDA using Weighted Covariance Scatter (가중치가 적용된 공분산을 이용한 2D-LDA 기반의 얼굴인식)

  • Lee, Seokjin;Oh, Chimin;Lee, Chilwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1446-1452
    • /
    • 2014
  • Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.

The Transform of Multidimensional Categorical Data and its Applications (다차원 범주형 자료의 변환과 그의 응용)

  • Ahn, Ju-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.585-595
    • /
    • 2007
  • The squared Euclid distance of the values which is transformed by P-matrix of Ahn et al. (2003) is in proportion to the squared Euclid distance of cell's relative frequencies in two Contingency Tables. We propose the method of using the PP-values for the analysis of modern poems and questionnaire data.

High-speed Hardware Design for the Twofish Encryption Algorithm

  • Youn Choong-Mo;Lee Beom-Geun
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.201-204
    • /
    • 2005
  • Twofish is a 128-bit block cipher that accepts a variable-length key up to 256 bits. The cipher is a 16­round Feistel network with a bijective F function made up of four key-dependent 8-by-8-bit S-boxes, a fixed 4­by-4 maximum distance separable matrix over Galois Field$(GF (2^8)$, a pseudo-Hadamard transform, bitwise rotations, and a carefully designed key schedule. In this paper, the Twofish is modeled in VHDL and simulated. Hardware implementation gives much better performance than software-based approaches.

Forensic Classification of Median Filtering by Hough Transform of Digital Image (디지털 영상의 허프 변환에 의한 미디언 필터링 포렌식 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.42-47
    • /
    • 2017
  • In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

Automatic Pose similarity Computation of Motion Capture Data Through Topological Analysis (위상분석을 통한 모션캡처 데이터의 자동 포즈 비교 방법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1199-1206
    • /
    • 2015
  • This paper introduces an algorithm for computing similarity between two poses in the motion capture data with different scale of skeleton, different number of joints and different joint names. The proposed algorithm first performs the topological analysis on the skeleton hierarchy for classifying the joints into more meaningful groups. The global joints positions of each joint group then are aggregated into a point cloud. The number of joints and their positions are automatically adjusted in this process. Once we have two point clouds, the algorithm finds an optimal 2D transform matrix that transforms one point cloud to the other as closely as possible. Then, the similarity can be obtained by summing up all distance values between two points clouds after applying the 2D transform matrix. After some experiment, we found that the proposed algorithm is able to compute the similarity between two poses regardless of their scale, joint name and the number of joints.

Design Criteria and Performance of Space-Frequency Bit-Interleaved Coded Modulations in Frequency-Selective Rayleigh Fading Channels

  • Park, Dae-Young;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.141-149
    • /
    • 2003
  • In this paper, we investigate design criteria and the performance of the space-frequency bit-interleaved coded modulation (SF-BICM) systems in frequency-selective Rayleigh fading channels. To determine the key parameters that affect the performance of SF-BICM, we derive the pairwise error probability (PEP) in terms of the determinant of the matrix corresponding to any two codewords. We prove that the bit-interleavers do the function of distributing the nonzero bits uniformly such that two or more nonzero bits are seldom distributed into the symbols that are transmitted in the same frequency bin. This implies that the bit-interleavers transform an SF-BICM system into an equivalent 1-antenna system. Based on this, we present design criteria of SFBICM systems that maximizes the diversity order and the coding gain. Then, we analyze the performance of SF-BICM for the case of 2-transmit antennas and 2-multipaths by deriving a frame error rate (FER) bound. The derived bound is accurate and requires only the distance spectrum of the constituent codes of SF-BICM. Numerical results reveal that the bound is tight enough to estimate the performance of SF-BICM very accurately.

Feature Matching Algorithm Robust To Viewpoint Change (시점 변화에 강인한 특징점 정합 기법)

  • Jung, Hyun-jo;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2363-2371
    • /
    • 2015
  • In this paper, we propose a new feature matching algorithm which is robust to the viewpoint change by using the FAST(Features from Accelerated Segment Test) feature detector and the SIFT(Scale Invariant Feature Transform) feature descriptor. The original FAST algorithm unnecessarily results in many feature points along the edges in the image. To solve this problem, we apply the principal curvatures for refining it. We use the SIFT descriptor to describe the extracted feature points and calculate the homography matrix through the RANSAC(RANdom SAmple Consensus) with the matching pairs obtained from the two different viewpoint images. To make feature matching robust to the viewpoint change, we classify the matching pairs by calculating the Euclidean distance between the transformed coordinates by the homography transformation with feature points in the reference image and the coordinates of the feature points in the different viewpoint image. Through the experimental results, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load.

Experimental Design of S box and G function strong with attacks in SEED-type cipher (SEED 형식 암호에서 공격에 강한 S 박스와 G 함수의 실험적 설계)

  • 박창수;송홍복;조경연
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.123-136
    • /
    • 2004
  • In this paper, complexity and regularity of polynomial multiplication over $GF({2^n})$ are defined by using Hamming weight of rows and columns of the matrix ever GF(2) which represents polynomial multiplication. It is shown experimentally that in order to construct the block cipher robust against differential cryptanalysis, polynomial multiplication of substitution layer and the permutation layer should have high complexity and high regularity. With result of the experiment, a way of constituting S box and G function is suggested in the block cipher whose structure is similar to SEED, which is KOREA standard of 128-bit block cipher. S box can be formed with a nonlinear function and an affine transform. Nonlinear function must be strong with differential attack and linear attack, and it consists of an inverse number over $GF({2^8})$ which has neither a fixed pout, whose input and output are the same except 0 and 1, nor an opposite fixed number, whose output is one`s complement of the input. Affine transform can be constituted so that the input/output correlation can be the lowest and there can be no fixed point or opposite fixed point. G function undergoes linear transform with 4 S-box outputs using the matrix of 4${\times}$4 over $GF({2^8})$. The components in the matrix of linear transformation have high complexity and high regularity. Furthermore, G function can be constituted so that MDS(Maximum Distance Separable) code can be formed, SAC(Strict Avalanche Criterion) can be met, and there can be no weak input where a fixed point an opposite fixed point, and output can be two`s complement of input. The primitive polynomials of nonlinear function affine transform and linear transformation are different each other. The S box and G function suggested in this paper can be used as a constituent of the block cipher with high security, in that they are strong with differential attack and linear attack with no weak input and they are excellent at diffusion.