• Title/Summary/Keyword: Displacement Discontinuity

Search Result 73, Processing Time 0.034 seconds

Analysis of Three Dimensional Cracks Subjected to the Mode I Loading by Using FEAM (유한요소 교호법을 이용한 모드 I 하중 하의 삼차원 균열의 해석)

  • Kim, Tae-Sun;Park, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.982-990
    • /
    • 2000
  • The finite element alternating method is extended further for general three dimensional cracks in an isotropic body subjected to the mode I loading. The required analytical solution for a dime dimensional crack in an infinite isotropic body is obtained by solving the integral equations. In order to remove the high singularity in integration, the technique suggested by Keat et al. was used. With the proposed method several example problems are solved in order to check the accuracy and efficiency of the method.

Parallel Crack in Bonded Dissimilar Orthotropic Planes Under Out-of-Plane Loading (면외하중을 받는 상이한 직교 이방성 평면내의 평행균열)

  • 최성렬;권용수;채영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.170-180
    • /
    • 1995
  • A parallel crack in bonded dissimilar orthotropic planes under out-of-plane loading is analyzed. The problem is formulated by Fourier integral transforms, and reduced to a pair of dual integral equations. By solving the integral equations, the asymptotic stress and displacement fields near the crack tip are determined in closed form, from which the stress intensity factor and energy release rate are obtained. Discontinuity in the stress intensity factor as the distance ratio h/a of the parallel crack approaches zero is found, while the energy releas rate is shown to be continuous at h/a = 0. This information can immediately be used to generate the stress intensity factor for the parallel crack near the interface. By employing "the maximum energy release rate criterion", it could be shown in the case of no existing crack initially that the parallel crack is formed far from the interface for the more compliant material, while it is formed close to the interface for the stiffer material. material.

Stabilization of pressure solutions in four-node quadrilateral elements

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.711-725
    • /
    • 1998
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babu$\check{s}$ka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to the stabilization parameters.

A Finite Element Method for Localized Failure Analysis of Concrete (콘크리트에서 국소화된 파괴해석을 위한 유한요소법)

  • 송하원;김형운;우승민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.233-238
    • /
    • 1999
  • Localized failure analysis of concrete structures can be carried out effectively by modeling fracture process zone of concrete during crack initiation and propagation. But, the analysis techniques are still insufficient for crack modeling because of difficulties in numerical analysis procedure which describe progressive crack. In this paper, a finite element with embedded displacement discontinuity is introduced to remove the difficulties of remeshing for crack propagation in discrete crack model during progressive failure analysis of concrete structures. The performance of this so-called embedded crack approach for concrete failure analysis is verified by several analysis examples. The analysis results show that the embedded crack approach retains mesh size objectivity and can simulate localized failure under mixed mode loading. It can be concluded that the embedded crack approach cab be an effective alternate to the smeared and discrete crack approaches.

  • PDF

Transition membrane elements with drilling freedom based on mixed-type formulation (Mixed 형태의 정식화에 기초한 회전자유도를 가진 변이 평면요소)

  • 최창근;이완훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.8-15
    • /
    • 1993
  • The transition membrane elements with drilling freedom have been developed. The functionals for the linear problem, in which the drilling rotations are introduced as independent variables, have been presented by Hughes & Bressi. And 4-node membrane elements with drilling degrees of freedom were developed by Ibrahimbegovic. The transition elements can be efficiently used in modelling the in-plane structures, in particular, where the stress concentration exists. A modified Gaussian quadrature adopted to evaluate the stiffness matrices of these transition elements which have slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the transition elements.

  • PDF

Predictions of Seismic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 지진응답 예측)

  • 김태훈;김운학;신현목
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.133-140
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete bridge piers and to provide the data for developing improved seismic design criteria. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected. local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for the prediction of seismic behavior for reinforced concrete bridge piers is veri fief by comparison with the reliable experimental results.

  • PDF

Numerical Study on Load Transfer Efficiency of Floating Slab Track (플로팅궤도 연결부의 하중전달효율 산정을 위한 수치해석)

  • Chung, Won-Seok;Jang, Hoon;Park, Sung-Jae;Park, Myung-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1287-1292
    • /
    • 2010
  • Recently, many railway stations are built under the railway line in urban area. The passage of railway vehicles generates mechanical vibrations of a wide range of frequency. Thus, it is required to place structural vibration isolation systems to reduce vibration and noise originating from surrounding environments. This study utilizes elastometric bearings as a vibration isolation system. The slab track system on elastometric bearings is called "low vibration track" or "floating slab track." In this low vibration track system, dowel bars or plates can be installed to minimize the discontinuity of displacement between adjacent floating slab tracks. This study is to numerically investigate the effects of dowel members on static behavior of the low vibration track. The study involves two steel dowel systems including dowel bars and dowel plates. Each dowel system is analyzed under the service load condition to assess load transfer efficiency (LTE).

  • PDF

Pressure Ripple Reduction in Hydrostatic Transmissions by Using a Hydraulic Filter (맥동흡수용 유압필터에 의한 유압전동장치의 압력맥동 감쇠)

  • 김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • This paper deals with pressure ripple attenuation far separated-type Hydrostatic Transmission (HST) consisting ova variable axial piston pump connected in an open loop to a fried displacement axial piston motor. Pressure ripples in HST is major source of vibration which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube tripe hydraulic filter is proposed to attenuate pressure ripples with the high frequencies components to achieve better noise reduction in HST. The basic principle of a hydraulic filter is allied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimentally shown that the hydraulic filter attenuates about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and provide a means of designing a quieter HST.

Thermo-elastic stability behavior of laminated cross-ply elliptical shells

  • Patel, B.P.;Shukla, K.K.;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.749-755
    • /
    • 2005
  • In this work, thermo-elastic stability behavior of laminated cross-ply elliptical cylindrical shells subjected to uniform temperature rise is studied employing the finite element approach based on higher-order theory that accounts for the transverse shear and transverse normal deformations, and nonlinear in-plane displacement approximations through the thickness with slope discontinuity at the layer interfaces. The combined influence of higher-order shear deformation, shell geometry and non-circularity on the prebuckling thermal stress distribution and critical temperature parameter of laminated elliptical cylindrical shells is examined.

Transition membrane elements with drilling freedom for local mesh refinements

  • Choi, Chang-Koon;Lee, Wan-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.75-89
    • /
    • 1995
  • A transition membrane element designated as CLM which has variable mid-side nodes with drilling freedoms has been presented in this paper. The functional for the linear problem, in which the drilling rotations are introduced as independent variables, has been formulated. The transition elements with variable side nodes can be efficiently used in the local mesh refinement for the in-plane structures, which have stress concentrations. A modified Gaussian quadrature is needed to be adopted to evaluate the stiffness matrices of these transition elements mainly due to the slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the new transition elements developed in this study.