• Title/Summary/Keyword: Dispersive material

Search Result 335, Processing Time 0.024 seconds

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method (습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구)

  • Lee, Dong Woo;Um, Chang Hyun;Chu, Jae Uk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.221-228
    • /
    • 2017
  • Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing (황화급속열처리를 이용한 SnS 박막성장 및 온도의존성 연구)

  • Shim, Ji-Hyun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • We fabricated a tin sulfide (SnS) layer with Sn/Mo/glass layers followed by a RTP (rapid thermal processing), and studied the film growth and structural characteristics as a function of annealing temperature and time. The elemental sulfur (S) was cracked thermally and applied to form SnS polycrystalline film out of the Sn percursor at pre-determined pressures in the RTP tube. The sulfurization was done at the temperature from $200^{\circ}C$ to $500^{\circ}C$ for a time period of 10 to 40 min. At ${\leq}300^{\circ}C$, 20 min., p-type SnS thin films was grown and showed the best composition of at.% of [S]/[Sn] $${\sim_=}$$ 1 and [111] preferred orientation as investigated from using XRD (X-ray diffraction) analysis and EDS (energy dispersive spectroscopy) and SEM (scanning electron microscopy), and optical absorption by a UV-VIS spectrometer. In this paper, we report the details of growth characteristics of single phase SnS thin film as a function of annealing temperature and time associated with the pressure and ambient gas in the RTP tube.

Analysis of the Coloration Characteristics of Copper Red Glaze Using Raman Microscope (Raman Microscope를 이용한 진사 유약 발색 특성 분석)

  • Eo, Hye-Jin;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.518-522
    • /
    • 2013
  • This study investigatesthe coloration mechanism by identifying the factor that affects thered coloration of copper red glazesin traditional Korean ceramics. The characteristics of the reduction-fired copper red glaze's sections are analyzed using an optical microscope, Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The sections observed using an optical microscope are divided into domains of surface, red-bubble, and red band. According to the Raman micro spectroscopy analysis results, the major characteristic peak is identified as silicate in all three domains, and the intensity of $Cu_2O$ increases toward the red band. In addition, it is confirmed that the most abundant CuO exists in the glaze bubbles. Moreover, CuO and $Cu_2O$ exist as fine particles in a dispersed state in the surface domain. Thus, Cu combined with oxygen is distributed evenly throughout the copper red glaze, and $Cu_2O$ is more concentrated toward the interface between body and glaze. It is also confirmed that CuO is concentrated around the bubbles. Therefore, it is concluded that the red coloration of the copper red glaze is revealed not only through metallic Cu but also through $Cu_2O$ and CuO.

Effect of Rapid thermal treated CdS Films prepared by CBD (CBD법으로 성장된 CdS 박막의 급속 열처리 효과)

  • Park, Seung-Beom;Song, Woo-Chang;Lim, Dong-Gun;Yang, Kea-Joon;Shim, Nak-Soon;Lee, Sang-Kyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.227-227
    • /
    • 2008
  • CdS is II-VI semiconductor with a wide band gap of approximately 2.42 eV. CdS is the most popularly employed heterojunction partner to p-CdTe due to its similar chemical properties. The as-deposited films are annealed in Rapid Thermal Annealing (RTA) system in various atmosphere(Air, Vacuum and $N_2$) at $500^{\circ}C$. In this work, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of chemical bath deposited (CBD) CdS films on glass is carried out. In case of the annealed CdS films in $N_2$, grain size was larger than as-annealed films.

  • PDF

A Study on the Composition Variation of 600v IV with Thermal Deterioration (열열화에에 따른 600V IV의 조성변화에 관한 연구)

  • 최충석;류선희;김형래;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.53-56
    • /
    • 1999
  • The weight decreases of the thermal deteriorated IV were rapidly increased at 80$0^{\circ}C$ and over. At the results of the analysis of the metallurgical microscope photographs. the surface of the thermal deteriorated IV at 30$0^{\circ}C$ was mixed with the elongated and original structures of Cu. But the elongated structures could not detected at 90$0^{\circ}C$ and over. The surface structures of SEM were detected a lot of small rounded particles between crystallizations. The EDX spectra of the thermal deteriorated IV at 3$0^{\circ}C$ were uniformly detected CuL, CuK, OK, and CIK, regardless of the scanning length, but the spectra of CIK could not found at 90$0^{\circ}C$. At the DTA curves, the endothermic reactions were occurred at about 25$0^{\circ}C$ to 30$0^{\circ}C$ and 43$0^{\circ}C$, and the exothermic reactions were occurred at about 48$0^{\circ}C$ respectively.

  • PDF

Influence of Pd Contents and Substrate Temperature on the Magnetic Property in Co1-xPdx Films (Co1-xPdx 합금의 Pd함량과 스퍼터 기판온도에 따른 자기적 특성 변화)

  • 이기영;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.744-751
    • /
    • 2003
  • Co-Pd alloy thin films prepared by a DC-sputter that have self-organized nano structure(SONS), are promising for high-density information storage media in information era. We prepared the samples by varying Pd contents of 0~8.1 wt% at the substrate temperatures of room temperature (RT) and 200 $^{\circ}C$, respectively Microstructure and Pd contents of the Co$_{1-x}$ Pd$_{x}$ films are probed by a scanning electron microscope (SEM), a transmission electron microscope (TEM) and an energy dispersive spectrometer (EDS). We also investigated the saturation magnetization (Ms), remanence and coercivity of the Co$_{1-x}$ Pd$_{x}$ films. Surface roughness are measured by an atomic force microscope (AFM). We revealed that self-organized nano size Co-enriched phase and Pd-enriched phase existed with Pd contents at the substrate temperatures of RT and 20$0^{\circ}C$ through microstructure characterization. SONS helped to keep the saturation magnetization and enhance the perpendicular anisotropy with Pd contents. Out result implies that we may tune the perpendicular magnetic properties with keeping the saturation magnetization by varying substrate temperatures and Pd contents for high density magnetic recording.rding.

Electrical Properties of Cu/Mn Alloy Resistor with Low Resistance and Thermal Stability (낮은 저항과 열안정성을 가지는 Cu/Mn 합금저항의 전기적 특성)

  • Kim, Eun Min;Kim, Sung Chul;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.365-369
    • /
    • 2016
  • In this paper, we fabricated Cu/Mn alloy shunt resistor with low resistance and thermal stability for use of mobile electronic devices. We designed metal alloy composed of copper (Cu) and manganese (Mn) to embody in low resistance and low TCR which are conflict each other. Cu allows high electrical conductivity and Mn serves thermal stability in this Cu/Mn alloy system. We confirmed the elemental composition of the designed metal alloy system by using energy dispersive X-ray (EDX) analysis. We obtained low resistance below $10m{\Omega}$ and low temperature coefficient of resistance (TCR) below $100ppm/^{\circ}C$ from the designed Cu/Mn alloy resistor. And in order to minimize resistance change caused by alternative frequency on circuit, shape design of the metal alloy wire is performed by rolling process. Finally, we conclude that design of the metal alloy system was successfully done by alloying Cu and 3 wt% of Mn, and the Cu/Mn alloy resistor has low resistance and thermal stability.

The Influence of Substrate Temperature on the Structural and Optical Properties of ZnS Thin Films (기판온도가 ZnS 박막의 구조 및 광학적 특성에 미치는 영향)

  • Hwang, Dong-Hyun;Ahn, Jung-Hoon;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.760-765
    • /
    • 2011
  • Znic sulfide (ZnS) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The substrate temperature varied from room temperature (RT) to $500^{\circ}C$. The structural and optical properties of ZnS films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive analysis of X-ray (EDAX) and UV-visible transmission spectra. The XRD analyses reveal that ZnS films have cubic structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM images indicate that ZnS films deposited at $400^{\circ}C$ have nano-sized grains with a grain size of ~ 67 nm. Then films exhibit relatively high transmittance of 80% in the visible region, with an energy band gap of 3.71 eV. One obvious result is that the energy band gap of the film increases with increasing the substrate temperatures.

The Characteristics of Multi-layer Structure LED with MgxZn1-xO Thin Films (MgxZn1-xO를 활용한 Multi-layer 구조 LED 특성에 관한 연구)

  • Son, Ji-Hoon;Kim, Sang-Hyun;Jang, Nak-Won;Kim, Hong-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.811-816
    • /
    • 2012
  • The effect of co-sputtering condition on the structural properties of $Mg_xZn_{1-x}O$ thin films grown by RF magnetron co-sputtering system was investigated for manufacturing ZnO/MgZnO structure LED. $Mg_xZn_{1-x}O$ thin films were grown with ZnO and MgO target varying RF power. Structural properties were investigated by X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDS). The ZnO thin films have sufficient crystallinity on the high RF power. As RF power of ZnO target increased, the contents of MgO in the $Mg_xZn_{1-x}O$ film decreased. LED was manufactured using ZnO/MgZnO multi-layer on p-GaN/$Al_2O_3$ substrate. Threshold voltage of multi-layer LED was appeared at 8 V, and it was luminesced at wave length of 550 nm.

A study on the Electrochemical Reaction Characteristic of Cu electrode According to the $KNO_3$ electrolyte ($KNO_3$ 전해액을 이용한 Cu 전극의 전기 화학적 반응 특성 고찰)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Sung-Il;Lee, Young-Kyun;Jun, Young-Kil;Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.49-49
    • /
    • 2007
  • 최근 반도체 소자의 고집적화와 나노 (nano) 크기의 회로 선폭으로 인해 기존에 사용되었던 텅스텐이나 알루미늄 금속배선보다, 낮은 전기저항과 높은 electro-migration resistance가 필요한 Cu 금속배선이 주목받게 되었다. 하지만, Cu CMP 공정 시 높은 압력으로 인하여 low-k 유전체막의 손상과 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 본 논문에서는, $KNO_3$ 전해액의 농도가 Cu 표면에 미치는 영향을 알아보기 위해 Tafel Curve와 CV (cyclic voltammograms)법을 사용하여 전기화학적 특징을 알아보았고 scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD) 분석을 통해 금속표면을 비교 분석하였다.

  • PDF