Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.9.760

The Influence of Substrate Temperature on the Structural and Optical Properties of ZnS Thin Films  

Hwang, Dong-Hyun (School of Materials Science and Engineering, Pusan National University)
Ahn, Jung-Hoon (School of Materials Science and Engineering, Pusan National University)
Son, Young-Guk (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.9, 2011 , pp. 760-765 More about this Journal
Abstract
Znic sulfide (ZnS) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The substrate temperature varied from room temperature (RT) to $500^{\circ}C$. The structural and optical properties of ZnS films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive analysis of X-ray (EDAX) and UV-visible transmission spectra. The XRD analyses reveal that ZnS films have cubic structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM images indicate that ZnS films deposited at $400^{\circ}C$ have nano-sized grains with a grain size of ~ 67 nm. Then films exhibit relatively high transmittance of 80% in the visible region, with an energy band gap of 3.71 eV. One obvious result is that the energy band gap of the film increases with increasing the substrate temperatures.
Keywords
ZnS thin film; Solar cells; Cd-free buffer layer; RF magnetron sputtering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. Daranfed, M. S. Aida, A. Hafdallah, and H. Lekiket, Thin Solid Films, 518, 1082 (2009).   DOI
2 T. Yamaguchi, Y. Yamamoto, T. Tanaka, Y. Demizu, and A. Yoshida, Thin Solid Films, 281, 375 (1996).   DOI
3 Y. P. V. Subbaiah, P. Prathap, K. T. R. Reddy, Appl. Surf. Sci., 253, 2409 (2006).   DOI
4 B. D. Cullity, Elements of X-ray Diffractions, (Addison-Wesley, Reading, 1978) p. 102.
5 Y. G. Son, D. H. Hwang, and S. Cho, J. Korean Vacuum Soc., 16, 267 (2007).   DOI
6 J. Jung and S. Cho, J. KIEEME, 23, 280 (2010).
7 X. Chen, W. Guan, G. Fang, and X. Z. Zhao, Appl. Surf. Sci, 252, 1561 (2005).   DOI
8 H. Metin and R. Esen, J. Cryst. Growth, 258, 141 (2003).   DOI
9 L. X. Shao, K. H. Chang, and H. L. Hwang, Appl. Surf. Sci., 212, 305 (2003).   DOI   ScienceOn
10 R. Zhang, B. Wang, and L. Wei, Mater. Chem. Phys., 112, 557 (2008).   DOI
11 Q. Liu, M. Guobing, and A. Jianping, Appl. Surf. Sci., 254, 5711 (2008).   DOI
12 M. M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, and K. Akimoto, Sol. Energy Mater. Sol. Cells, 93, 970 (2009).   DOI
13 C. T. Hsu, J. Cryst. Growth, 208, 259 (2000).   DOI
14 J. Ihanus, M. Ritala, M. Leskela, T. Prohaska, R. Resch, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci., 120, 43 (1997).   DOI   ScienceOn
15 V. L. Gayou, B. Salazar-Hernandez, M. E. Constantino, E. R. Andres, T. Diaz, R. D. Macuil, and M. R. Lopez, Vaccum, 84, 1191 (2010).   DOI
16 Q. Liu, M. Guobing, and A. Jianping, Appl. Surf. Sci., 254, 5711 (2008).   DOI