• 제목/요약/키워드: Dispersion property

검색결과 338건 처리시간 0.031초

Synthesis and Characteristics of Organic Soluble Polyaniline by Emulsion Polymerization (유화 중합법에 의한 유기 용매 가용형 폴리아닐린의 합성 및 그 특성)

  • 김진열;권시중;한성원;김응렬
    • Polymer(Korea)
    • /
    • 제27권6호
    • /
    • pp.549-554
    • /
    • 2003
  • Emeraldine salt of polyaniline-dodecylbenzenesulfdnic acid (PANI-DBSA) in organic solvents such as toluene and xylene was obtained by a direct one-step emulsion polymerization technique. When the molar ratio of DBSA to aniline monomer was 1.5:1, its solubility and electric property showed a maximum value and then the solid contents of PANI-DBSA was 8 wt% in toluene. The cast film of PANI-DBSA with no binder was obtained on glass or plastic substrates under ambient conditions. PANI solution can be also easily blended with polyurethane and polystyrene polymers in toluene. Improved electrical performance up to 5 S/cm was achieved with good light-transmittance up to 70% at 500 m thickness. They also showed more homogeneous morphology than that prepared with PANI-DBSA kom aqueous dispersion polymerization. The partially dispersed PANI-DBSA showed particles sizes of 50-400 m in organic solvents and their XRD pattern were observed from the powder sample.

Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • 제53권3호
    • /
    • pp.175-180
    • /
    • 2018
  • Solution-styrene-butadiene rubber (SSBR) composites were manufactured using four kinds of fillers: silica-silane coated carbon black (SC-CB) hybrid, starch-SC-CB hybrid, pure silica, and pure starch. The influence of filler type on the mechanical properties of the rubber matrix was studied in this work. SC-CB was prepared by silane-graft-coating using vinyl triethoxy silane and carbon black, which enhanced the dispersion effect between the rubber matrix and the filler, and improved the mechanical properties of the compounds. The morphology of the composites was observed by field-emission scanning electron microscopy (FE-SEM). The thermal decomposition behavior of the composites was determined by thermogravimetric analysis (TGA), and the crosslinking behavior of the composites was tested using a rubber process analyzer (RPA). The hardness, tensile strength, swelling ratio, and gas transmittance rate of the composites were evaluated according to ASTM. The test results revealed that with the addition of SC-CB, the hybrid fillers, especially those blended with silica, showed a better reinforcement effect, the highest hardness and tensile strength, and stable thermal decomposition behavior. This implies that the silica-SC-CB hybrid filler has a notable mechanical reinforcement effect on the SSBR matrix. Because of self-crosslinking during its synthesis, the starch-SC-CB hybrid filler produced the most dense matrix, which improved the anti-gas transmittance property. The composites with the hybrid fillers had better anti-swelling properties as compared to the neat SSBR composite, which was due to the hydrophilicity of silica and starch.

A Study on the Dielectric Properties and Electrical Conduction of PVDF Thin Films by Physical Vapor Deposition (진공 증착법으로 제작한 PVDF 박막의 유전 특성과 전기전도도에 대한 연구)

  • Gang, Seong-Jun;Lee, Won-Jae;Jang, Dong-Hun;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제37권5호
    • /
    • pp.9-15
    • /
    • 2000
  • The 3 ${\mu}{\textrm}{m}$-thick PVDF (polyvinylidene fluoride) thin film have been prepared using physical vapor deposition with electric field, and its FT-IR spectrum, dielectric property and electric conduction phenomenon have been investigated. Since the characteristic peaks are detected at 509.45 [$cm^{-1}$ /] and 1273.6 [$cm^{-1}$ /]in the FT-IR spectrum, we are confirmed that the $\beta$ -phase is dominant in the PVDF thin film. In the results of dielectric properties, the PVDF thin film shows anomalous dispersion, i.e. gradual decrease of dielectric constant with increase of frequency, and also that the dielectric absorption point changes from 200 Hz to 7000 Hz with increasing temperature of thin film, which is consistent with the Debye's theory. The activation energy ( $\Delta$H) obtained from temperature dependence of dielectric loss is 21.64 ㎉/mole. We confirm that the electric conduction mechanism of PVDF thin film is dominated by ionic conduction by investigating the dependence of the leakage current of the thin film on the temperature and the electric field.

  • PDF

Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권5호
    • /
    • pp.3627-3632
    • /
    • 2015
  • We investigated mechanical, rheological and electrical properties of graphite/PP/LCP composites for a bipolar plate of the polymer electrolyte membrane fuel cell. The composites containing very low molecular weighted PP showed much higher electrical conductivity compared with other thermoplastics. This was attributed to the enhanced dispersion of graphite particles due to the low viscosity of the PP. The conductivity of the composites was increased in a great extent by incorporation of small amount of carbon nano tube (CNT). However, the acid treated CNT which contains oxygen atoms did not increase the conductivity of the composite. From this result, it is concluded that the CNT has higher affinity with non polar polymer. The composite with low molecular weighted PP provided good processability so that the composites can be processed by an injection molding while the mechanical strength is deficient compared to other polymers. In order to reinforce the low mechanical property, LCP/PP was used as a binder and the graphite/PP/LCP composite showed the higher conductivity and moderate mechanical strength maintaining suitable processability.

Studies of Methane Oxidation Catalyst on H2-CNG Mixed Fuel Vehicles (수소-CNG 혼소연료 차량에서의 메탄 저감을 위한 산화촉매에 관한 연구)

  • Lee, Ung-Jae;Shim, Kyung-Sil;Yang, Jaechun;Kim, Tae-Min
    • Journal of the Korean Institute of Gas
    • /
    • 제17권5호
    • /
    • pp.22-27
    • /
    • 2013
  • HCNG engine is performed as a future engine because of high combustion efficiency and eco-friendly property, and is predicted to a brdge of hydrogen vehicles. As EURO-6 regulagion is due to be applied in 2014, consolidated regulations of methane gas that is exhausted from CNG and HCNG vehicles will come into effect. In this studies, methane oxidation catalyst is introduced to remove methane gas from HCNG emissions. Methane oxidation efficiency on catalyst was studied when it is driven long time. And characterization like metal dispersion, surface area was performed to investigate the correlation of catalyst efficiency and characteristics.

Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone

  • Gong, Pin;Ni, Minxuan;Chai, Hao;Chen, Feida;Tang, Xiaobin
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.470-477
    • /
    • 2018
  • With a highly functional methyl vinyl silicone rubber (VMQ) matrix and filler materials of $B_4C$, PbO, and benzophenone (BP) and through powder surface modification, silicone rubber mixing, and vulcanized molding, a flexible radiation shielding and resistant composite was prepared in the study. The dispersion property of the powder in the matrix filler was improved by powder surface modification. BP was added into the matrix to enhance the radiation resistance performance of the composites. After irradiation, the tensile strength, elongation, and tear strength of the composites decreased, while the Shore hardness of the composites and the crosslinking density of the VMQ matrix increased. Moreover, the composites with BP showed better mechanical properties and smaller crosslinking density than those without BP after irradiation. The initial degradation temperatures of the composites containing BP before and after irradiation were $323.6^{\circ}C$ and $335.3^{\circ}C$, respectively. The transmission of neutrons for a 2-mm thick sample was only 0.12 for an Am-Be neutron source. The transmission of ${\gamma}$-rays with energies of 0.662, 1.173, and 1.332 MeV for 2-cm thick samples were 0.7, 0.782, and 0.795, respectively.

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Study on the Physical Properties of Cellular Rubber Products (국산(國産) 스폰지류(類)의 물성연구(物性硏究))

  • Paik, Nam-Chul;Ryu, Woon-Young;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • 제15권3호
    • /
    • pp.147-154
    • /
    • 1980
  • The cellular rubber products for industrial purpose have been applied in many fields such as auto-motive parts, ship-building, machinery, sports goods, diving suit or interior housings etc. The purpose of this dissertation is to study the physical properties of celluar rubber products particulary for those elastomers such as EPDM, CR and NBR with heat resistance property, weather proofness, and oil resistance characteristics respectively, aiming at improving their quality, and renovating the manufacturing know-how which is beyond our technical power at the present time in Korea. In order to meet this requirement an ideal recipe is being shown for the three elastomers, and also a practical recipe which is easily available in terms of compounding ingredients in domestic market has set up as shown in Table 1. for the investigation of vulcanization characteristics by means of Rheometer. The optimum Mooney viscosity of compounded rubber was found to be approximately $ML_{1+4}(100^{\circ}C)$ $30\sim45$. Excess mustication makes a dispersion of ingredients worse, consequently it causes deformation of shapes and heterogenous cell distribution. In other words the articles are rejected because of its insufficient workmanship. The results of physical properties of the products are indicated in Table 3. It has shown that the quality meet requirement when tested in accordance with ASTM D572, 573 and D 395. The test results o CR/IR blends in terms of hardness, volume change by blowing, tensile strength and elongation have been shown.

  • PDF

Effect of Acrylic Acid-modified Polyethylene Wax Using Sequential Reaction on Properties of Polyamide/Glass Fiber Composite (폴리아미드/유리섬유 복합재료의 물성에 대한 연속반응 아크릴산 변성 폴리에틸렌 왁스의 영향)

  • Kim, Hyochul;Kim, Hyung-Il;Han, Won-Hee;Hong, Min-Hyuk;Lee, Hyunwoo
    • Applied Chemistry for Engineering
    • /
    • 제30권2호
    • /
    • pp.198-204
    • /
    • 2019
  • Polymer composites are widely used as industrial materials requiring high mechanical properties. Glass fibers and fillers, which are used as a reinforcement in composites, usually have some problems such as nonuniform dispersion and poor interfacial adhesion. In this study, an acrylic acid-modified polyethylene wax was synthesized by the sequential reaction of pyrolysis of polyethylene followed by grafting with a polar acrylic acid. The acrylic acid-modified polyethylene wax was applied to polymer composites of the polyamide matrix and glass fiber reinforcement. The effect of acrylic acid-modified polyethylene wax on physical properties of polyamide based composites was thoroughly investigated.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • 제31권11호
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.