Browse > Article
http://dx.doi.org/10.14478/ace.2018.1126

Effect of Acrylic Acid-modified Polyethylene Wax Using Sequential Reaction on Properties of Polyamide/Glass Fiber Composite  

Kim, Hyochul (Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University)
Kim, Hyung-Il (Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University)
Han, Won-Hee (Lion Chemtech Co., Ltd.)
Hong, Min-Hyuk (Lion Chemtech Co., Ltd.)
Lee, Hyunwoo (Lion Chemtech Co., Ltd.)
Publication Information
Applied Chemistry for Engineering / v.30, no.2, 2019 , pp. 198-204 More about this Journal
Abstract
Polymer composites are widely used as industrial materials requiring high mechanical properties. Glass fibers and fillers, which are used as a reinforcement in composites, usually have some problems such as nonuniform dispersion and poor interfacial adhesion. In this study, an acrylic acid-modified polyethylene wax was synthesized by the sequential reaction of pyrolysis of polyethylene followed by grafting with a polar acrylic acid. The acrylic acid-modified polyethylene wax was applied to polymer composites of the polyamide matrix and glass fiber reinforcement. The effect of acrylic acid-modified polyethylene wax on physical properties of polyamide based composites was thoroughly investigated.
Keywords
Polyamide; Glass fiber; Acrylic acid-modified polyethylene wax; Composite; Physical property;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 N. M. M. Abd. Rahman, A. Hassan, and R. Yahya, Plasticisation effect on thermal, dynamic mechanical and tensile properties of injection-moulded glass-fibre/polyamide 6,6, J. Sci. Technol., 3, 47-66 (2011).
2 H. G. Jeoung, J. S. Park, D. S. Jang, and S. J. Lee, Effect of solvent content on morphology and rubber particle size distribution of high impact polystyrene, Polymer (Korea), 26, 307-315 (2002).   DOI
3 J. Kim, S. Hwang, Y. S. Hong, W. Huh, and S. Lee, Real-time XRD analysis of polystyrene/clay nanocomposites by in-situ polymerization, Polymer (Korea), 29, 87-90 (2005).
4 A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res., 8, 1185-1189 (1993).   DOI
5 H. Zou, S. Wu, and J. Shen, Polymer/silica nanocomposites: Preparation, characterization, properties, and applications, Chem. Rev., 108, 3893-3957 (2008).   DOI
6 K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, Synthesis and properties of polyimide-clay hybrid, J. Polym. Sci. A, 31, 2493-2498 (1993).   DOI
7 C. Saujanya and S. Radhakrishnan, Structure development and crystallization behaviour of PP/nanoparticulate composite, Polymer, 42, 6723-6731 (2001).   DOI
8 Y. T. Lee, Preparation of specialty organic-inorganic materials by sol-gel process, Polym. Sci. Technol., 4, 444-451 (1993).
9 C. C. Park, C. K. Kim, E. Y. Kim, H. D. Kim, and B. K. Kim, Viscoelastic properties of SAN/PPTA, SAN/Kevlar, and SAN/carbon fiber reinforced composites, Polymer (Korea), 13, 76-82 (1989).
10 B. Shin, J. Jeun, H. Kim, and P. Kang, Thermal behavior and abrasion properties of glass fiber reinforced Nylon 12 crosslinked by electron beam irradiation, Polymer (Korea), 35, 30-34 (2011).   DOI
11 D. W. Chung and S. C. Kang, Study on the frictional properties of nylons synthesized by varying catalyst content, Polymer (Korea), 29, 14-18 (2005).   DOI
12 M. W. Jung, S. C. Kim, and E. Y. Yu, Pyrolysis and catalytic decomposition over HZSM-5 for recycle of the waste plastics, J. Korean Soc. Environ. Eng., 23, 1537-1545 (2001).
13 C. Pinto and L. G. Andrade e Silva, Study of ionizing radiation on the properties of polyamide 6 with fiberglass reinforcement, Radiat. Phys. Chem., 76, 1708-1710 (2007).   DOI
14 W. P. Ferro and L. G. Andrade e Silva, Ionizing radiation effect studies on polyamide 6.6 properties, Radiat. Phys. Chem., 71, 269-271 (2004).   DOI
15 S. W. Yu, J. S. Choi, and J. S. Na, A study on synthesis and hydrolysis of the maleated polyethylene wax, Clean Technol., 19, 393-400 (2013).   DOI
16 S. W. Yu, J. S. Choi, and J. S. Na, Effect of solvent on the grafting polymerization of polyethylene wax with maleic anhydride, J. Korean Inst. Resour. Recycl., 23, 48-57 (2014).   DOI
17 Y. Jia and L. Zhang, A process for preparing polyethylene wax microspheres and optimization of their dissolution precipitation by response surface methodology, J. Appl. Polym. Sci., 129, 1476-1483 (2013).   DOI
18 G. Liang, J. Xu, S. Bao, and W. Xu, Polyethylene/maleic anhydride grafted polyethylene/organic-montmorillonite nanocomposites. I. Preparation, microstructure, and mechanical properties, J. Appl. Polym. Sci., 91, 3974-3980 (2004).   DOI
19 B. R. Choi and Y. J. Park, Studies on oxidation modification of polyethylene wax, J. Korean Ind. Eng. Chem., 8, 837-843 (1997).
20 G. Moad, The synthesis of polyolefin graft copolymers by reactive extrusion, Prog. Polym. Sci., 24, 81-142 (1999).   DOI
21 J. Kim, J. Song, M. Im, J. Park, H. Kim, and H. I. Kim, Preparation of acrylic acid-modified polyethylene wax by sequential reaction of pyrolysis and grafting, Polymer (Korea), 42, 466-469 (2018).   DOI
22 N. G. Gaylord and R. Mehta, Role of homopolymerization in the peroxide catalyzed reaction of maleic anhydride and polyethylene in the absence of solvent, J. Polym. Sci. C (Polym. Lett.), 20, 481-486 (1982).   DOI
23 P. Uribe-Arocha, C. Mehler, J. E. Puskas, and V. Altstadt, Effect of sample thickness on the mechanical properties of injection-molded polyamide-6 and polyamide-6 clay nanocomposites, Polymer, 44, 2441-2446 (2003).   DOI
24 O. Monticelli, Z. Musina, F. Ghigliotti, S. Russo, and V. Causin, On polyamide 6-montmorillonite nanocomposites obtained by in-situ polymerization, e-Polymers, 7(1), 124 (2007).   DOI
25 A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, Synthesis of nylon 6-clay hybrid, J. Mater. Res., 8, 1179-1184 (1993).   DOI
26 S. H. Wu, F. Y. Wang, C. C. M. Ma, W. C. Chang, C. T. Kuo, H. C. Kuan, and W. J. Chen, Mechanical thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites, Mater. Lett., 49, 327-333 (2001).   DOI
27 T. Kashiwagi, R. H. Harris Jr., X. Zhang, R. M. Briber, B. H. Cipriano, S. R. Raghavan, W. H. Awad, and J. R. Shields, Flame retardant mechanism of polyamide 6-clay nanocomposites, Polymer, 45, 881-891 (2004).   DOI
28 B. Mu, Q. Wang, T. Wang, H. Wang, and L. Jian, The friction and wear properties of clay filled PA 66, Polym. Eng. Sci., 48, 203-209 (2008).   DOI
29 S. C. Kang and D. W. Chung, The study on the improvement of friction properties of graphite/Nylon composite by oil-impregnation, J. Korean Soc. Precis. Eng., 19, 114-122 (2002).
30 J. Y. Lee and K. J. Kim, Overview of polyamide resins and composites: A review, Elastomers Compos., 51, 317-341 (2016).   DOI
31 C. De Rosa and F. Auriemma, Crystals and Crystallinity in Polymers: Diffraction Analysis of Ordered and Disordered Crystals, 185-295, John Wiley & Sons, NY, USA (2013).
32 A. A. Marek, J. Zawadiak, T. Piotrowski, and B. Hefczyc, A new efficient method for the processing of post-consumer polypropylene and other polyolefin wastes into polar waxes, Waste Manag., 46, 62-67 (2015).   DOI
33 https://www.additives-honeywell.com/performance-additives/tds/?pid=1409.
34 R. Snyder, M. Maroncelli, H. L. Strauss, and V. Hallmark, Temperature and phase behavior of infrared intensities: The poly(methylene) chain, J. Phys. Chem., 90, 5623-5630 (1986).   DOI
35 G. C. Kim, High Density Polyethylene, Polym. Sci. Technol., 4, 12-22 (1993).
36 R. Wolf and B. L. Kaul, Ullmann's Polymers and Plastics: Products and Processes. Volume 1, Plastics, Additives, 527-580, Wiley-VCH, Weinheim, Germany (2016).
37 H. Mitomo, Correspondence of lamellar thickness to melting point of nylon-6,6 single crystal, Polymer, 29, 1635-1642 (1988).   DOI
38 H. Mimoto, Estimation of lamellar thickness of nylon 66 single crystal by hydrolysis and gel permeation chromatography, J. Polym. Sci. B, 26, 467-472 (1988).   DOI
39 B. B. Burnett and W. F. McDevit, Kinetics of spherulite growth in high polymers, J. Appl. Phys., 28, 1101-1105 (1957).   DOI
40 S. M. Kim and K. J. Kim, Effects of moisture and temperature on recrystallization and mechanical property improvement of PA 66/GF composite, Polymer (Korea), 39, 880-888 (2015).   DOI
41 J. L. Thomason, The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6,6, Composites A, 40, 114-124 (2009).   DOI
42 M. T. Hahn, R. W. Hertzberg, J. A. Manson, and L. H. Sperling, The influence of temperature and absorbed water on the fatigue crack propagation in nylon 66, Polymer, 27, 1885-1888 (1986).   DOI