• 제목/요약/키워드: Dispersion index

검색결과 293건 처리시간 0.026초

A Proposal of Simplified Eigenvalue Equation for an Analysis of Dielectric Slab Waveguide

  • Choi Young-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.381-386
    • /
    • 2006
  • In dielectric waveguide analysis and synthesis, we often encounter an awkward task of solving the eigenvalue equation to find the value of propagation constant. Since the dispersion equation is an irrational equation, we cannot solve it directly. Taking advantage of approximated calculation, we attempt here to solve this irrational dispersion equation. A new type of eigenvalue equation, in which guide index is expressed as a function of frequency, has been developed. In practical optical waveguide designing and in calculating the propagation mode, this equation will be used more conveniently than the previous one. To expedite the design of the waveguide, we then solve the eigenvalue equation of a slab waveguide, which is sufficiently accurate for practical purpose.

Photonic Bandgap Bragg Fibers: A New Platform for Realizing application-specific Specialty Optical Fibers and Components

  • Pal, Bishnu P.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2006년도 동계학술발표회 논문집
    • /
    • pp.87-88
    • /
    • 2006
  • Bragg fibers, consisting of a low index core (including air) surrounded by a series of periodic layers of alternate high and low refractive index materials, each being higher than that of the core, form a 1D photonic bandgap (PBG). In view of the multitude of individual physical parameters that characterize a Bragg fiber, they offer a wide choice of parametric avenues to tailor their propagation characteristics. Owing to their unique PBG guidance mechanism, Bragg fibers indeed exhibit unusual dispersion characteristics that are otherwise nearly impossible to achieve in conventional silica fibers. Solid core Bragg fibers, amenable to fabrication by the highly mature MCVD technology, could be designed to realize broadband supercontinuum light. This talk would review our recent works on modeling of propagation characteristics, dispersion tailoring in them for applications as metro as well as dispersion compensating fibers and also as supercontinuum light generators.

  • PDF

Magnus Rotor형 분산자탄 탄착군의 분산 균일도 평가 (Evaluation of The Dispersion Uniformity of Footprint of The Magnus Rotor Type Dispersive Submunition)

  • 사공현규
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.230-237
    • /
    • 2024
  • Dispersion munitions are often equipped with dispersive submunitions used to scatter bombs over a wide area, and one of the types of dispersive submunitions is the Magnus rotor, commonly referred to as a self-rotating flying body. The Magnus rotor is designed to be dispered over a wide area by utilizing the principle of the Magnus effect through self-rotation, and has various trajectories depending on the initial conditions from the mother dispersion munition. In this paper, an index to evaluate the dispersion uniformity of footprint of the dispersive submunition is presented and the dispersion uniformity according to various initial release conditions is evaluated, and it is getting larger with high incidence angle and get max value at certain initial angular velocity.

A Comparison of the Results from Somatotype Evaluation with Different Evaluation Tools

  • Choi, Wan-Suk;Choi, Jung-Hyun;Cho, Mi-Suk;Moon, Ok-Kon;Park, Joo-Hyun;Chung, Hyung-Kuk;Lee, Suk-Hee;Lee, Jung-Sook;Min, Kyung-Ok
    • 국제물리치료학회지
    • /
    • 제1권1호
    • /
    • pp.65-72
    • /
    • 2010
  • Supposing that somatotype evaluation results would have significant differences between the public group with less amounts of exercises and the special group with intensive exercises for three to four times a day, this study aimed at comparing the mutual consistency between the results determined by somatotype evaluation tools such as visually calculated index(VCI), R$\ddot{o}$hrer's Index(RI) and Body Mass Index(BMI). The public, taekwondo players and judo players groups were composed of fifty persons, taekwondo players and judo players passed through VCI determination, respectively. Their height and weight were examined and analyzed with somatotype evaluation tools. Comparison of somatotype dispersion of RI and VCI showed that most women were determined by VCI as lean type but were determined by RI as normal type. And that women were determined by VCI as fat type but were determined by RI as normal type. Therefore both men and women showed significant differences in VCI and RI. Comparison of somatotype dispersion of VCI and BMI showed that both men and women were overestimated or underestimated by VCI rather than by BMI. Comparison of somatotype dispersion of RI and BMI showed that men were less determined by BMI as lean type compared with women; both men and women less determined by BMI rather than by RI as normal type; and both men and women, in particular, were more determined by BMI as fat type but men were more determined by BMI rather than by RI as fat type. Total somatotype consistency by tools showed that VCI has the greatest possibility of determining the public group, compared with other groups as lean type and that the consistency of the three tools were relatively higher for the taekwondo players and judo players groups, compared with the public.

  • PDF

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan;Kim, Soeun
    • Current Optics and Photonics
    • /
    • 제3권4호
    • /
    • pp.298-303
    • /
    • 2019
  • We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Effect of Fiber Dispersion and Self-phase Modulation in Multi-channel Subcarrier Multiplexed Optical Signal Transmission

  • Kim, Kyoung-Soo;Jeong, Ji-Chai;Lee, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.351-356
    • /
    • 2010
  • We investigated the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) in multi-channel subcarrier multiplexed (SCM) optical transmission systems. We theoretically analyzed the transmission characteristics of the SCM signals with the effect of SPM and chromatic dispersion in a single-mode optical fiber by numerical simulations based on the nonlinear Schrodinger equation. The numerical simulation results revealed that the effect of fiber dispersion and SPM could occur independently between subcarrier channels in two-channel SCM systems for small optical modulation index (OMI) and large channel spacing. However, for large OMI, small channel spacing, and large fiber launching power, we found a performance degradation of the two-channel system compared to that of a single-channel system. These parameters are therefore important for the optimization of multi-channel SCM systems applicable to radio over fiber networks.

Analysis on Transition between Index- and Bandgap-guided Modes in Photonic Crystal Fiber

  • Hong, Kee Suk;Lim, Sun Do;Park, Hee Su;Kim, Seung Kwan
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.733-738
    • /
    • 2016
  • We calculate optical properties of guided modes of a hybrid-guiding photonic crystal fiber. The design and modeling of such hybrid-guiding PCF is made by replacing air holes with inserts of high refractive index material layer by layer in order. The optical properties such as mode intensity profile, mode dispersion, optical birefringence, confinement loss, and chromatic dispersion during transition of the guiding mechanism are analyzed and discussed. The guided modes in the hybrid-guiding region are also compared with those of reference index-guiding and bandgap-guiding photonic crystal fibers.

점도 및 침전지수에 의한 액상화 레드머드의 분산 특성평가 (Evaluation of Dispersion Characteristics for Liquefied Red Mud by Viscosity and Sediment Index)

  • 강석표;강혜주
    • 한국건축시공학회지
    • /
    • 제17권6호
    • /
    • pp.517-525
    • /
    • 2017
  • 레드머드(Red mud)는 보오크사이트 원광석으로부터 수산화알루미늄($Al(OH)_3$) 및 산화알루미늄($Al_2O_3$)을 제조하는 공정에서 발생되는 산업부산물로 Bayer Process를 통하여 함수율 50%의 슬러지 상태로 국내에서 연간 약 30만톤이 발생되고 있다. 본 논문에서는 함수율 50%의 레드머드 슬러지를 가열 공정없이 건설산업 현장에 사용할 수 있도록 적정 혼합수 및 첨가제를 사용하여 액상화하고 점도, 입도, 침전지수와 같은 분산특성을 검토하였다. 본 논문의 범위에 한정하여 액상화 레드머드의 안정적인 분산을 위해서는 초기 점도를 2000cP에서 8000cP을 적용하고 목표 침전지수를 20%이하로 설정하는 것이 타당할 것으로 사료된다.

사면해석을 위한 최적의 절리군 대표방향성 도출 및 활용기법 연구 (A Study for the Optimum Joint Set Orientations and Its Application to Slope Analysis)

  • 조태진
    • 터널과지하공간
    • /
    • 제28권4호
    • /
    • pp.343-357
    • /
    • 2018
  • 절리군 대표방향성에만 의존하는 기존의 평사투영 사면해석의 불확실성을 극복하고 해석결과의 신뢰성을 증진시키기 위하여 확률통계학적으로 도출된 절리극점들의 dense point 및 절리군 대표방향성과 암반구조 분석결과를 종합적으로 고려하여 사면거동양상을 분석하는 알고리즘을 고안하였다. 이를 위하여 절리극점들의 분포양상에 의거하여 절리확산지수를 산정하는 기법을 고안하였으며, 콘각에 따라 상이하게 도출되는 절리확산지수 및 절리군 수효와 방향성을 종합적으로 고려하여 사면해석에 사용될 대표방향성을 추출하였다. 이들 대표방향성을 평사투영분석에 활용하여 신뢰성이 증진된 사면해석을 수행할 수 있었다. 또한 평면파괴가 우려되는 사면에 대해 한계평형이론에 의거하여 민감도 해석을 수행하고, 사면 안정성에 대한 절리강도 및 외부하중 변화의 영향을 심도 있게 분석하였다.