• Title/Summary/Keyword: Dispersion fields

Search Result 183, Processing Time 0.025 seconds

Electrical Properties for Micro-and-Nano- Mixture Composites using Electric Field Dispersion (전기장분산법을 이용한 나노와 마이크로 혼합된 콤포지트의 전기적 특성)

  • Cho, Dae-Lyoung;Kim, Jong-Ho;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.32-32
    • /
    • 2010
  • A epoxy/multilayered silicate nanocomposite was prepared by a new AC electric application method and micro silica particle was poured into the nanocomposite in order to prepare epoxy/micro-and-nano- mixed composites (EMNC). Electric insulation breakdown strength was measured in a sphere-sphere electrode system designed for the prevention of edge breakdown and the data were estimated by Weibull plot. As the exfoliated silicate nano-plates were homogeniously dispersed in the micro silica particles, the insulation property was higherd.

  • PDF

TM Mode Analysis of a Periodic Thick Mushroom Structure

  • Woo, Dae Woong;Park, Wee Sang
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.43-46
    • /
    • 2012
  • We analyzed a periodic thick mushroom structure for use as an artificial magnetic conductor using mode-matching method. The fields in each region were represented by either Floquet modes or waveguide modes. By applying tangential electric and magnetic field continuity conditions and using matrix equations, unknown coefficients and dispersion diagram were calculated. The proposed model can account for the effects of oblique incidence. Simulation time using the method was much faster than the commercial tools. We found that the current method produces accurate results of reflection phase and dispersion diagram.

Observation of the Electromagnetically Induced Transparency and Dispersion-like Structure in Trapped Cs Atoms

  • Kim, Kyoung-Dae;Kwon, Mi-Rang;Kim, Jung-Bog;Moon, Han-Seb
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.131-135
    • /
    • 2001
  • We report experiemtnal results demonstrating the electromagnetically induced transparency (EIT) in trapped Cs atoms. EIT occurs at the Λ-type configuration where the re0-pumping laser simultaneously plays a role as the coupling laser in the presence of a magneto-optical trapping and weak magnetic fields. Dependences of EIT signal on both the intensity and the detuning of the coupling laser were investigated. Linear absorption spectra for cold cesium atoms in the magneto-optical trap have been observed and shown the pronounced dispersion-like structure with sub-natural linewidth of 1 MHz due to the cooling laser.

A WSR-88D Radar Observation of Chaff Transport and Diffusion in Clear Sky

  • Lee, Dong-In
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.263-271
    • /
    • 2000
  • To investigate the distribution of air pollutants dispersion in the horizontal wind fields, a chaff release experiment was carried out by an airplane. The temporal and spatial variations of a chaff plume from an elevated point source using the WSR-88D(NEXRAD) radar. The observed profiles of radar reflectivity were compared with the Gaussian diffusion model at slightly unstable atmospheric condition. The present study shows that the distributions of radar reflectivity from chaffs and their concentration by the model are in general agreement with time variation. The dispersion coefficients in downwind($\sigma$(sub)x) and crosswind($\sigma$(sub)y) spread data exceeded what has generally been found at Pasquill and Brigg\`s estimates. As a result, it was clearly shown that horizontal and vertical diffusion coefficients are more accurately determined as compared with theoretical coefficients. At longer diffusion distances(than 10km), a radar observation provided the determination of maximum range and diffusion height more qualitatively, too.

  • PDF

Synthesis of Porous Carbon Particles for the Absorption of Mercury (액상수은 제어를 위한 다공성 탄소입자 제조에 관한 연구)

  • Lee, Jung-Min;Kang, Shin-Jae;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.305-305
    • /
    • 2009
  • The carbon nano-structured materials could be applied to the fields of advanced fillers, templates, electrode materials, sensor, storage, and absorption materials. The polyacrylonitrile (PAN) based carbon nano-particles provide the remarkable properties of high specific surface area, large pore volume, chemical inertness, and good mechanical stability. In this study, well-defined carbon nano-particles were obtained through pyrolysis of polyacrylonitrile based particles. The precursor nano-particles were prepared by modified aqueous dispersion polymerization using hydrophilic poly(vinyl alcohol) in a water/ N,N-dimethylformamide mixture media. Synthesized precursor nanoparticles have relatively monodisperse particles ranging 80 ~ 250nm. Stable spherical particles are obtained without coagulum or secondary particles in our system. The characteristic of the carbon nanoparticles were investigated in terms of surface area, morphology, and size distribution.

  • PDF

Turbulent Particle Dispersion Effects on Electrostatic Precipitation (전기집진에서의 난류 입자 이산)

  • Choe, Beom-Seok;Fletcher C.A.J
    • 연구논문집
    • /
    • s.28
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF

Magnetization of a Modified Magnetic Quantum Dot

  • Park, Dae-Han;Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.154-157
    • /
    • 2016
  • The energy dispersion and magnetization of a modified magnetic dot are investigated numerically. The effects of additional electrostatic potential, magnetic field non-uniformity, and Zeeman spin splitting are studied. The modified magnetic quantum dot is a magnetically formed quantum structure that has different magnetic fields inside and outside of the dot. The additional electrostatic potential prohibits the ground-state angular momentum transition in the energy dispersion as a function of the magnetic field inside the dot, and provides oscillation of the magnetization as a function of the chemical potential energy. The magnetic field non-uniformity broadens the shape of the magnetization. The Zeeman spin splitting produces additional peaks on the magnetization.

Dispersion Indices and Sequential Sampling Plan for the Citrus Red Mite, Panonychus citri (McGregor) (Acari: Tetranychidae) on Satsuma Mandarin on Jeju Island (온주밀감에서 률응애의 공간분포분석 및 표본추출법)

  • 송정흡;이창훈;강상훈;김동환;강시용;류기중
    • Korean journal of applied entomology
    • /
    • v.40 no.2
    • /
    • pp.105-109
    • /
    • 2001
  • Dispersion pattern of the citrus red mite (CRM), Panonychus citri (McGregor) was determined to develop a monitoring method in the satsuma mandarin fields, Citrus unshiu L., in Jeju-do, during 1999 and 2000. CRM population was sampled by collecting leaves. Taylor's power law provided better description of mean-variance relationship for the dispersion indices compared to Iwao's patchiness regression. Slopes and intercepts of Taylor's power law from leaf samples did not differ among surveyed groves. Fixed-precision levels (D) of a sequential sampling plan were developed using Taylor's power law parameters generated from all motile stages of CRM in leaf sample. This sampling plan for leaf sample estimate was tested with resampling validation for sampling plan using 4 independent data sets. Resampling simulation analysis demonstrated that actual fixed-precision level values were better than desired D values of 0.20, 0.25 and 0.30. Required numbers for tree sampling at the density of more than 7 mites per tree were fewer than 18.

  • PDF

Microstructure and High Temperature Mechanical Properties of Oxide Dispersion Strengthened Steels Manufactured by Combination Milling Process (복합 밀링 공정으로 제조된 산화물 분산 강화 강의 미세조직 및 고온 기계적 특성)

  • Lee, Jung-Uk;Kim, Young-Kyun;Kim, Jeoung Han;Kim, Hwi-Jin;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.389-395
    • /
    • 2021
  • Oxide dispersion-strengthened (ODS) steel has excellent high-temperature properties, corrosion resistance, and oxidation resistance, and is expected to be applicable in various fields. Recently, various studies on mechanical alloying (MA) have been conducted for the dispersion of oxide particles in ODS steel with a high number density. In this study, ODS steel is manufactured by introducing a complex milling process in which planetary ball milling, cryogenic ball milling, and drum ball milling are sequentially performed, and the microstructure and high-temperature mechanical properties of the ODS steel are investigated. The microstructure observation revealed that the structure is stretched in the extrusion direction, even after the heat treatment. In addition, transmission electron microscopy (TEM) analysis confirmed the presence of oxide particles in the range of 5 to 10 nm. As a result of the room-temperature and high-temperature compression tests, the yield strengths were measured as 1430, 1388, 418, and 163 MPa at 25, 500, 700, and 900℃, respectively. Based on these results, the correlation between the microstructure and mechanical properties of ODS steel manufactured using the composite milling process is also discussed.

Evaluation of Structural Changes and Dispersibility of Boron Nitride Nanotubes under Different Ultrasonication Conditions (초음파 처리 조건에 따른 질화붕소나노튜브 구조 변화 및 분산성 평가)

  • Da Bin Cheon;Won Jung Choi;Seung Hwa Yoo
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.350-355
    • /
    • 2024
  • Boron nitride nanotubes (BNNT) are materials of significant interest in next-generation technological fields due to their outstanding physicochemical properties, including excellent chemical and thermal stability. However, for effective utilization, dispersion of BNNT is essential. Unfortunately, BNNT exhibit hydrophobic surfaces and strong van der Waals forces, making their dispersion challenging. Current dispersion methods include the addition of surfactants and surface functionalization, but these chemical treatments often damage BNNT and involve cumbersome processes. In this study, we dispersed BNNT in water under various tip ultrasonication conditions and identified conditions that do not affect BNNT using FT-IR spectroscopy, Raman spectroscopy, and X-ray diffraction analysis. Subsequently, enhanced dispersibility was confirmed through turbidity measurements, and the solubility range in 15 different solvents was evaluated using the Hansen solubility parameter.