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Abstract 
 

We analyzed a periodic thick mushroom structure for use as an artificial magnetic conductor using mode-matching method. 

The fields in each region were represented by either Floquet modes or waveguide modes. By applying tangential electric and 

magnetic field continuity conditions and using matrix equations, unknown coefficients and dispersion diagram were 

calculated. The proposed model can account for the effects of oblique incidence. Simulation time using the method was much 

faster than the commercial tools. We found that the current method produces accurate results of reflection phase and 

dispersion diagram. 
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1. INTRODUCTION 
 

Periodic mushroom structures are widely used in the 

analysis and design of antennas and waveguides, because of 

their unique features as Artificial Magnetic Conductor (AMC) 

or Electromagnetic Bandgap (EBG) [1-3]. In conventional 

mushroom structures, conductors are assumed to be very thin, 

and there are few research about thick conductor. In this 

paper, plane wave scattering by the periodic mushroom 

structure with a conductor of finite thickness is analyzed 

utilizing a rigorous and accurate technique based on [4]. As 

an example, TM polarized plane wave incidence is studied. 

However, our analysis could be easily generalized to various 

configurations of periodic mushroom-like structure with 

different type and location of excitation sources. 

 

2. FORMULATION 
 

Firstly, we divide the mushroom structure (Fig.1) into three 

regions (a, above the mushroom cap; b, the cap; and c, 

between the base of the cap and the substrate) and represent 

the electromagnetic fields in each region. The incident 

magnetic and electric waves are represented by 

 
Fig. 1.  Geometry of the periodic thick mushroom. 
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where m is the Floquet mode number, and the –j term in (2b) 

 

means that fields decay with distance from the periodic 

structure (radiation condition). When the EM frequency is 

less than the grating frequency, only the zeroth mode (m = 0) 

propagates from the periodic mushroom structure; the other 

modes are evanescent. 

The scattered waves in region b are represented using an 

infinite number of the forward and the backward waveguide 

modes by 
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Here, u is the waveguide mode number in region b. When the 

frequency is below first cut-off frequency, only zeroth mode 

(u = 0) propagates and the other modes are evanescent 

throughout that region. 

In the same manner, the scattered waves in region c can be 

represented by 
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In (5), v is the waveguide mode number in region c. The 

boundary condition (Ez = 0 at y = -h1 - h2) was applied in each 

waveguide modes. Since we assumed the infinite periodic 

structure, the analysis of a unit cell is sufficient. The required 

boundary conditions are 

 

, 0 , 0 , / 2x y x yE E x p= + = −= ≤              (7a) 

, 0 , 0 1, / 2z y z yH H x w= + = −= ≤             (7b) 

1 1, , 2, / 2x y h x y hE E x w=− + =− −= ≤           (7c) 

1 1, , 1, / 2z y h z y hH H x w=− + = −= ≤           (7d) 

 

Table I. Field notation 

Region Field function Orthogonal function 

a m n 

b u r 

c v s 

 

To obtain the unknown coefficients (An, Cu
+
, Cu

-
, Dv), we 

should multiply some orthogonal functions defined for each 

region (Table I). After applying the tangential continuity, the 

unknown coefficients can be calculated using the following 

equations. 
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To solve the equation, Cu
+
 and Cu

-
 must be transformed in 

terms of Am and Dv. From (8c) and (8d), we can obtain 
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Applying (9a) and (9b) to (8a) and (8b) yields 
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where 
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Truncation is required to solve the two matrix equations (9). 

If the maximum Floquet mode number is M and the 

maximum waveguide number is V, the matrix size of (9) is 

(2M + V + 2) х (2M + V + 2). In general, the reflection phase 

∠A0 of the dominant mode and dispersion diagram is of 

prime interest in AMC. Dispersion diagram can be obtained 

using the determinant of (9). If det (matrix) = 0, then R → ∞ 

and only surface waves exist. 

 

3. RESULTS 

 

We plotted some reflection phase and dispersion diagrams. 

Simulation using the formulated matrix equation was done 

within a few seconds, which is much faster than commercial 

simulators. The reflection amplitude of zeroth and first mode, 

and the reflection phase of zeroth mode are converged when 

the truncated mode number (M) ≥ 12 (Fig. 2). In dispersion 

diagram, cutoff frequencies of the TM mode are 12 GHz, 

16.5 GHz, and 8.7 GHz, respectively. We found that the 

results of the reflection phase (Fig. 3) and dispersion diagram 

(Fig. 4) agreed well with the output of commercial simulators 

(Ansoft HFSS and CST MWS). 

  

 
(a) 

 
(b) 

Fig. 2.  Reflection (a) amplitude and (b) phase with the 

truncation number (M). p = 5 mm, h1 = 0.5 mm, h2 = 1 mm, w2 = 

0.5 mm, εra = εrb = εrc = 1, µra = µrb = µrc = 1. 

 

 
Fig. 3.  Reflection phase of 0th mode. p = 5 mm, h1 = 0.5 mm, 

h2 = 1 mm, w2 = 0.5 mm, εra = εrb = εrc = 1, µra = µrb = µrc = 1, (a) 

w1 = 0.3mm, θi = 0°. (b) w1 = 0.95mm, θi = 60°. 

 

 
Fig. 4.  Dispersion diagram. h1 = 0.5 mm, h2 = 1 mm, w2 = 4.7 

mm, (a) w2 = 0.3 mm, εrc = 1.0, (b) w2 = 0.3 mm, εrc = 4.0, (c) w2 

= 2.5 mm, εrc = 4.0. 

 

4. CONCLUSION 
 

We used the mode-matching technique to analyze a 

periodic thick mushroom AMC. The fields in each region 

were represented by Floquet or waveguide modes. By 

applying tangential electric and magnetic field continuity 
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conditions and using matrix equations, unknown coefficients 

and dispersion diagrams were calculated. The proposed 

method was much faster than the conventional simulation tool 

(CST, HFSS) and had good accuracy. 
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