• Title/Summary/Keyword: Dispersion equation

Search Result 330, Processing Time 0.028 seconds

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Applicability of the Korteweg-de Vries Equation for Description of the Statistics of Freak Waves (최극해파통계분석을 위한 Korteweg-de Vries식의 적용성 검토)

  • Anna Kokorina;Efim Pelinovsky
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.308-318
    • /
    • 2002
  • The requirements to the numerical model of wind-generated waves in shallow water are discussed in the framework of the Korteweg-de Vries equation. The weakness of nonlinearity and dispersion required for the Korteweg-de Vries equation applicability is considered for fully developed sea, non-stationary wind waves and swell, including some experimental data. We note for sufficient evaluation of the freak wave statistics it is necessary to consider more than about 10,000 waves in the wave record, and this leads to the limitation of the numerical domain and number of realizations. The numerical modelling of irregular water waves is made to demonstrate the possibility of effective evaluation of the statistical properties of freak waves with heights equal to 2-2.3 significant wave height.

Coastally Trapped Waves over a Double Shelf Topography(II) : Free Waves with Linear Topographies (양향성 대륙붕의 대륙붕파 (II): 선형함수적 해저지형에서의 자유파)

  • PANG Ig-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.443-456
    • /
    • 1992
  • For a linear double shelf bottom topography as in the Yellow Sea, the dispersion relation of coastally trapped waves is derived for the general case Including high-frequency and short waves and for the case of low-frequency and long waves. With linear bottom topography, the governing equation is Bessel's equation for the latter case but Hummer's equation for the former case. Hypergeometric Functions, which are the solutions of Hummer's equation, are derived and converted to various special functions for the limiting cases. On a double shelf topography, the divergence effects of horizontal flow are important for the wave dynamics, irrespective of cross-shelf dimensions, while on a single shelf they are usually neglected when the cross-shelf dimension is much smaller than the Rossby deformation radius. The divergence effect allows the existence of Kelvin wave and reduces the phase speeds of continental shelf waves. Finally, the frictionless eigenfunctions are proved to be orthogonal.

  • PDF

Horizontal 2-D Finite Element Model for Analysis of Mixing Transport of Heat Pollutant (열오염 혼합 거동 해석을 위한 수평 2차원 유한요소모형)

  • Seo, Il Won;Choi, Hwang Jeong;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.507-514
    • /
    • 2011
  • A numerical model has been developed by employing a finite element method to simulate the depth-averaged 2-D dispersion of the heat pollutant, which is an important pollutant material in natural streams. Among the finite element methods, the Streamline Upwind/Petrov Galerkin (SUPG) method was applied. Also both linear and quadratic elements can be applied so that irregular river boundaries can be easily represented. To show the movement of heat pollutants, the reaction term describing heat transfer was represented as an equation in which sink/source term is proportional to the difference between the equilibrium temperature and water surface temperature. The equation was expressed so that the water surface temperature changes according to the temperature transfer coefficient and the equilibrium temperature. For the calibration of the model developed, analytic and numerical results from a case of rectangular channel with full width continuous injection have been compared in a steady state. The comparisons showed that the numerical results were in good agreement with analytical solutions. The application site was selected from the downstream of Paldang dam to Jamsil submerged weir, and overall length of this site is about 22.5 km. The change of water temperature caused by the discharge from the Guri sewage treatment plant has been simulated, and results were similar to the observed data. Overall it is concluded that the developed model can represent the water temperature changes due to heat transport accurately. But the verification using observed data will further enhance the validity of the model.

Effects of evanescent modes on three-dimensional depression of seabed (3차원 함몰 지형에서 소멸파 성분의 영향)

  • Jung, Tae-Hwa;Kim, Hyung-Joon;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1125-1133
    • /
    • 2009
  • Evanescent modes which are the other solutions of the Laplace equation for the linear dispersion equation may affect the wave transformation especially when a water depth varies abruptly. In this study, the effects of evanescent modes for a three-dimensional depression of seabed are investigated by using the eigenfunction expansion method. A convergence test is first carried out by changing numbers of domains and evanescent modes. The wave transformation for various depressions of seabed is then calculated under condition that the solution of the eigenfunction expansion method is converged.

A radial point interpolation method for 1D contaminant transport modelling through landfill liners

  • Praveen Kumar, R.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • In the framework of meshfree methods, a new methodology is developed based on radial point interpolation method (RPIM). This methodology is applied to a one-dimensional contaminant transport modelling in the saturated porous media. The one-dimensional form of advection-dispersion equation involving reactive contaminant is considered in the analysis. The Galerkin weak form of the governing equation is formulated using 1D meshfree shape functions constructed using thin plate spline radial basis functions. MATLAB code is developed to obtain the numerical solution. Numerical examples representing various phenomena, which occur during migration of contaminants, are presented to illustrate the applicability of the proposed method and the results are compared with those obtained from the analytical and finite element solutions. The proposed RPIM has generated results with no oscillations and they are insensitive to Peclet constraints. In order to test the practical applicability and performance of the RPIM, three case studies of contaminant transport through the landfill liners are presented. A good agreement is obtained between the results of the RPIM and the field investigation data.

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

Gravitational Instability of Rotating, Vertically-Stratified, Polytropic Disks

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Hong, Seung-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.111.2-111.2
    • /
    • 2011
  • While many astrophysical disks are vertically stratified and obey a polytropic equation of state, most studies on gravitational instability (GI) of flattened systems consider isothermal, razor-thin disks by taking vertical averages of disk properties. We investigate local GI of rotating pressure-confined polytropic disks with resolved vertical stratification by performing linear stability analysis. We find that the GI of vertically-stratified disks is in general a combination of conventional razor-thin Jeans modes and incompressible modes. The incompressible modes that dominate in the limit of the maximal disk compression require surface distortion and are an unstable version of terrestrial water waves. Disks with a steeper equation of state are found to be more Jeans unstable because they tend to have a smaller vertical scale height as well as a steeper temperature gradient corresponding to lower pressure support. GI depends more sensitively on the vertical temperature than density distribution. The density-weighted, harmonic mean, rather than the simple mean, of the adiabatic sound speed well describes the dispersion relation of horizontal modes, and thus is appropriate in the expression for Toomre Q stability parameter of razor-thin disks. We generalize Q into vertically-stratified disks, and discuss astrophysical application of our work.

  • PDF

Evaluation of Solid Surface Properties by Analysis of Liquid Penetration Rate into Powder Beds (분체층 내 액체 침투속도 해석에 의한 분체 표면성질의 평가)

  • Ha, Jong-Hak;Kim, Seong-Soo;Wang, Lin;Choi, Hee-Kyu
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.128-136
    • /
    • 2008
  • Evaluation of the solid surface properties by an analysis of the liquid penetration rate into powder beds is very important in applications of powder products. The penetration rate is related the surface property in powder beds. In order to analyze the surface property of powders, the contact angle values of several powders were obtained using the Washbun equation and the Wicking method. The surface free energy value ${\gamma}S$ was divided into a polar component ${\gamma}S^p$ and a dispersion component ${\gamma}S^d$. Inorganic powders such as calcite were used as test samples. The effects of the particle size and the type of experimental liquid on the penetration rate were measured. It was confirmed that the surface free energy of the grinding sample is smaller than that of the classification sample.

The Characteristic of Wave Propagation in the Irregular Wave-current field (불규칙파.흐름 공존장에서 파랑변동특성)

  • Lee, Chang-Ho;Kim, Heon-Tae;Ryu, Cheong-Ro;Lee, In-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.128-134
    • /
    • 2003
  • Numerical study on interactions of waves and currents has considerable practical interests in coastal and ocean engineering. And wave-current interactions strongly influence wave characteristics, current profiles, and forces on offshore structures. Presence of currents affects wave properties such as wave height and wave profiles. Furthermore, in case of the irregular waves, it is more complicated problem. The propose of present study, using the one-dimensional wave-current numerical model is based on the extended Boussinesq equation(Madsen, 1991) and an alternative form of wave-current dispersion relation(Mohiuddin, 1999, 2000) including wave action concept, is to simulate wave propagation in a current field including the irregular waves and discuss applicability of the model in a wave-current field.

  • PDF