• Title/Summary/Keyword: Dispersion Agent

Search Result 206, Processing Time 0.027 seconds

Development of High Performance Curing Agent and Effective Dispersion Method of Nanomaterials (고성능 피막양생제 개발 및 나노물질의 분산방안 평가)

  • Son, Ho-Jung;Yoo, Byung-Hyun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.230-236
    • /
    • 2019
  • Recently, issues related to the quality of concrete have continuously resulted in surface quality problems, such as the exfoliation of concrete surfaces due to the cost reduction of cement and poor quality fine aggregate, scaling of surfaces caused by laitance, and plastic shrinkage cracks. Prompted by social issues, the application of a photo catalyst to road structures is being attempted to solve the environmental problems caused by fine dust and automobile exhaust. In this study, chemical admixtures were developed to improve the surface quality of concrete and to apply and distribute titanium dioxide in nanoscale sizes to provide basic data for the development of a photocatalyst-curing agent. As a result of the experiment, silicon and silane were reviewed as a raw material as a curing agent to develop a high performance curing agent with better film performance than conventional curing agents because they could form a film quickly on a fresh concrete surface. The distributed stability of the ultrasonic disperser showed the best performance through an outdoor test for four weeks to review the dispersion measures for the application of nanomaterials.

A Study on Semi Abrasive Free Slurry including Acid Colloidal Silica for Copper Chemical Mechanical Planarization (구리 CMP 적용을 위한 산성 콜로이드 실리카를 포함한 준무연마제 슬러리 연구)

  • 김남훈;김상용;서용진;김태형;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.272-277
    • /
    • 2004
  • The primary aim of this study is to investigate new semi-abrasive free slurry including acid colloidal silica and hydrogen peroxide for copper chemical-mechanical planarization (CMP). In general, slurry for copper CMP consists of colloidal silica as an abrasive, organic acid as a complex-forming agent, hydrogen peroxide as an oxidizing agent, a film forming agent, a pH control agent and several additives. We developed new semi-abrasive free slurry (SAFS) including below 0.5% acid colloidal silica. We evaluated additives as stabilizers for hydrogen peroxide as well as accelerators in tantalum nitride CMP process. We also estimated dispersion stability and Zeta potential of the acid colloidal silica with additives. The extent of enhancement in tantalum nitride CMP was verified through anelectrochemical test. This approach may be useful for the application of single and first step copper CMP slurry with one package system.

Surface Modification of Ag Coated Cu Conductive Metal Powder for Conductive Silicone Sealant Gasket Paste

  • Park, Seong-Yong;Yoon, Tae-Won;Lee, Chung-Ho;Jeong, In-Bum;Hyun, Sang-Hoon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1076-1077
    • /
    • 2006
  • Conductive pastes consist of conductive fillers( Au, Ag, Ni, Cu etc.), organic binders, solvents and additives. Meanwhile, there are some metal powders such as copper, nickel etc that are used for pastes which have serious surface corrosion problems. This problem leads to change of the color and decrease in conductivity and affect storage stability of conductive pastes. By using silane coupling agent and dispersion agent, we can ensure both the corrosion stability and long term storage stability, and enhance the high performance electrical and mechanical properties of EMI shielding silicone sealant.

  • PDF

Effects of Viscosity on Dispersion Stability of Nano CoAl2O4 Ceramic Ink

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.497-501
    • /
    • 2015
  • Inkjet printing is a widespread technology, offering advantages such as high-quality decoration, a continuous process, and the accurate direct reproduction of patterns or pictures. In inkjet printing technology, the dispersion stability of ceramic ink is one of the most important factors. In this study, the dispersion stability of blue $CoAl_2O_4$ ink for ceramic inkjet printing is systematically investigated. Blue $CoAl_2O_4$ pigment was synthesized by a solid-state reaction and then milled to less than 300nm in size. In order to investigate the influence of the viscosity on the dispersion stability, two types of $CoAl_2O_4$ ceramic inks (termed here Blue L and Blue H) were prepared using different volume ratios of ethylene glycol and ethanol. The Blue L and Blue H ink solutions contained cetyltrimethylammonium bromide(CTAB) as a dispersive agent. The viscosity, surface tension and jetting stability of the $CoAl_2O_4$ ceramic inks were analyzed using a rheometer, a surface tension meter and a dropwatcher. The dispersion stability of the $CoAl_2O_4$ ceramic ink was investigated by a multiple light-scattering method. Blue H, a ceramic ink with higher viscosity, showed much better dispersion stability than the Blue L ceramic ink.

Dispersion of SmxCe1-xO2-2/x Nanoparticles which is Synthesized by Hydrothermal Process in Aqueous System (수열합성법으로 합성된 나노 SmxCe1-xO2-2/x 분말의 수계 분산)

  • Bae Dong-Sik;Kim Eun-Jung;Han Kyong-Sop
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.112-114
    • /
    • 2005
  • Dispersion stability of the $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles, which was produced by hydrothermal process, was studied in aqueous suspension using ESA (Eletrokinetic Sonic Amplitude). The average particle size of the synthesized $Sm_xCe_{1-x}O_{2-2/x}$ at nanoparticles was about $5{\pm}2nm$. The dispersion and rheological behavior of the $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles aqueous suspension was investigated using $NH_4OH\;and\;HNO_3$ as a disperse agent. The colloidal stability of aqueous suspensions with $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles at different pH values has been investigated by means of zeta potential, average particle size, and the distribution of synthesized $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles. The isoelectric point of the $Sm_xCe_{1-x}O_{2-2/x}$ nanoparticles was at pH around 11 and the value of zeta potential was at its maximum near pH 6.5.

Antifungal Activities of Isothiazoline/Cabamate based Organic Antifungal Agent Activated-Cement Mortars (AACM)

  • Do Jeong-Yun;So Hyoung-Seok;Soh Yang-Seob
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.171-177
    • /
    • 2002
  • Antifungal agents are used to impart antibacterial or bactericidal properties to commodities and various articles used in industries and can be classified into two broad groups i.e organic and inorganic. Inorganic antifungal agents comprise of Ag, Zn, or Cu, etc. These elements tend to exhibit high level of antifungal activities, non-uniform dispersion in substrates, and have poor properties in expensive and cheap adhesiveness. In this study, the organic antifungal agent was used for the purpose of investigating the antifungal activity of antifungal agent activated-cement mortar (AACM) on the aspergilus niger of various fungus which can be easily discovered in the interiors and exteriors of buildings. In addition, an experiment on the basic physical properties of AACM such as compressive and flexural strength was carried out. The conclusion of this investigation revealed that a dosage increase of antifungal agent exhibits a high inhibitory effect on the aspergilus niger, and although there is a slight decrease in the strength of AACM, the strength of AACM was almost equal to that of inactivated cement mortar.

  • PDF

The Study on Prepare Water Proof Agent by Acryl Copolymer and Oleic Acid Mixed Emulison (아세트화 아크릴 공중합체-올레인산 혼합 에멀젼계 방수제 제조연구)

  • Kim, Young-Geun;Hwang, Yong-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.83-94
    • /
    • 1996
  • EMA-co-DAMA were synthesized from 2-diethylaminoethyl metacrylate and ethylhexyl metacrylate in acrylmonomer. To facilitate water emulsification, acrylic copolymer was cationized by acetic acid to produce acetated acrylic copolymer. The structures of the synthesized copolymer and acetated copolymers were confirmed by IR, NMR, and molecular weight was measure by GPC, and C.H.N elemental analysis. Acetated acrylic copolymers were perfectly emulsified in water and showed increased emulsion stability. Polymer dispersion for cement modifier[(PDCM-PED) water proof agent of cement for concrete in building construction] was prepared by blending of the guaternized acrylic copolymer syndisized above, sodium silicate, sodium gluconate and oleic acid emulsion. The result with prepared polymer dispersion of cement modifier was examined, and it was found that excellent waterprooffing effect ; Water permeability ratio is 0.50 under the water pressure of $100g/cm^2$ and 0.60 under $3kg/cm^2$, and water absorption ratio is $0.42{\sim}0.50$ and $1.0{\sim}1.02$ compressive strength ratio at mixed of water/PDCM-PED is 50 times.

Effect of Polyethylene Glycol on Physicochemical Property in Dispersing Film Formulation (분산형 필름제형의 물리적 특징에 미치는 폴리에틸렌글리콜의 영향)

  • Cho, Young Ho;Lee, Jong-Hwa;Lee, Gye Won
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.291-299
    • /
    • 2016
  • In this study, Indomethacin, the poorly water soluble drug, was selected and prepared dispersing oral disintegrating films according to the molecular weight of polyethylene glycol (PEG) which are sort of dispersing agents. Also the molecular weight and content of PEG were evaluated effect on the degree of dispersion, physical property and dissolution when making oral dispersing film containing indomethacin to find appropriate condition and suggested guidelines of making oral dispersing film. The appropriate dispersing ratio of the amount of surfactants and dispersing agent were 1% and 4%, also the stability dropped in the PEG molecular weight of 4000 or more. Drying time of oral dispersing film was $90^{\circ}C$ for 10 minutes to 12 minutes that dispersing film's property about flexibility, detachability were very good. The oral dispersion film's content used PEG 400 was $98.6{\pm}0.5%$ and the most uniform. As the molecular weight of PEG increased, dissolution time also increased. On the basis of evaluation parameter, PEG with 400~600 of molecular weight was selected as good dispersing agent in oral dispersing film. Therefore, it can be suggested guideline of preparation application study in oral dispersing film.

Enhanced Dispersion of Yttria Stabilized Zirconia by Mixed Dispersants Containing Carboxyl Group in Aqueous System (수성 현탁액에서 카르복실기를 포함하는 혼합 분산제에 의한 이트리아 안정화 지르코니아의 분산성 향상)

  • Kim, Soo-Hyun;Kang, Jong-Bong;Bae, Sung-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.82-88
    • /
    • 2018
  • Stable slurries of YSZ in aqueous suspension with added polymer dispersants, namely, poly-methacrylic acid ammonium salt (PMMA), poly-acrylic acid (PAA) and poly-acrylic-co-maleic acid (PAMA), were mixed with the monomolecular dispersants citric acid and oxalic acid. The dispersion properties of the suspension were investigated using PSA, viscosity, sedimentation, and FT-IR. The polymer dispersants and monomolecular dispersants were attached to the YSZ surface by the carboxylic group, as shown by the FTIR results. A stabilized aqueous suspension was obtained when the polymer dispersant and citric acid were mixed and compared to the use of citric acid alone as a dispersant agent. When the polymer dispersant and citric acid were mixed and milled through attrition milling, there was a smaller particle size compared to when the polymer dispersant alone was used as a dispersant agent. This study determined that the particle size of the mixed dispersant was affected by the properties of the monomolecular dispersant and that the stability of the suspension was affected by the polymer dispersant. However, when slurries of YSZ were mixed with oxalic acid, the particle bridging behavior was the result of the high degree of viscosity and the small sedimentation height.

Mechanical properties of TiO2/epoxy resin nanocomposites

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.69-77
    • /
    • 2013
  • The purpose of this study is to improve the properties of epoxy resin using the big-sized titanium oxide nanoparticles. The effects of particle weight fraction and shape of sample on the thermal and mechanical properties in titanium oxide reinforced epoxy resin has been investigated. In addition, the effect of particle dispersion situation on the mechanical properties of nanocomposites has been studied. As a result, the Tg was almost same regardless of the content of nanoparticles. Storage modulus increased up to the content of 3wt% particles and then decreased. Tensile strength and modulus of film-shaped sample with 1wt% was higher than the one of pure epoxy, while other composites were not. The tensile strength of dogbone-shaped sample with 1wt% was only higher than the one of pure epoxy, while other composites were lower than the one of pure epoxy. Tensile modulus of dogbone-shaped samples increased with the content of particles.